87
Views
15
CrossRef citations to date
0
Altmetric
Research Article

ELECTRON SUPPLY AND CATALYTIC OXIDATION OF NITROGEN BY CYTOCHROME P450 AND NITRIC OXIDE SYNTHASE

, , &
Pages 479-501 | Published online: 25 Jul 2002

REFERENCES

  • Hlavica P., Lehnerer M. Some Aspects of the Role of Cytochrome P-450 Isozymes in the N-Oxidative Transformation of Secondary and Tertiary Amine Compounds. J. Biochem. Toxicol. 1995; 10: 275–285
  • Moali C., Boucher J.-L., Sari M.-A., Stuehr D.J., Mansuy D. Substrate Specificity of NO Synthases: Detailed Comparison of L-Arginine, Homo-L-Arginine, Their Nω-Hydroxy Derivatives, and Nω-Hydroxynor-L-Arginine. Biochemistry 1998; 37: 10453–10460
  • Renaud J.P., Boucher J.-L., Vadon S., Delaforge M., Mansuy D. Particular Ability of Liver P450s3a to Catalyze the Oxidation of Nω-Hydroxyarginine to Citrulline and Nitrogen Oxides and Occurrence in NO Synthases of a Sequence Very Similar to the Heme-Binding Sequence in P450s. Biochem. Biophys. Res. Commun. 1993; 192: 53–60
  • White K.A., Marletta M.A. Nitric Oxide Synthase is a Cytochrome P-450 Type Hemoprotein. Biochemistry 1992; 31: 6627–6631
  • Stuehr D.J., Ikeda-Saito M. Spectral Characterization of Brain and Macrophage Nitric Oxide Synthases. Cytochrome P-450-like Hemeproteins That Contain a Flavin Semiquinone Radical. J. Biol. Chem. 1992; 267: 20547–20550
  • McMillan K., Bredt D.S., Hirsch D.J., Snyder S.H., Clark J.E., Masters B.S.S. Cloned, Expressed Rat Cerebellar Nitric Oxide Synthase Contains Stoichiometric Amounts of Heme, Which Binds Carbon Monoxide. Proc. Natl Acad. Sci. USA 1992; 89: 11141–11145
  • Porter T.D., Kasper C.B. Coding Nucleotide Sequence of Rat NADPH-Cytochrome P-450 Oxidoreductase cDNA and Identification of Flavin-Binding Domains. Proc. Natl Acad. Sci. USA 1985; 82: 973–977
  • Bredt D.S., Hwang P.M., Glatt C.E., Lowenstein C., Reed R.R., Snyder S.H. Cloned and Expressed Nitric Oxide Synthase Structurally Resembles Cytochrome P-450 Reductase. Nature 1991; 351: 714–718
  • Wang M., Roberts D.L., Paschke R., Shea T.M., Masters B.S.S., Kim J.-J.P. Three-Dimensional Structure of NADPH-Cytochrome P450 Reductase: Prototype for FMN- and FAD-Containing Enzymes. Proc. Natl Acad. Sci. USA 1997; 94: 8411–8416
  • Siddhanta U., Presta A., Fan B., Wolan D., Rousseau D., Stuehr D. Domain Swapping in Inducible Nitric-Oxide Synthase. Electron Transfer Occurs Between Flavin and Heme Groups Located on Adjacent Subunits in the Dimer. J. Biol. Chem. 1998; 273: 18950–18958
  • Sagami I., Daff S., Shimizu T. Intra-Subunit and Inter-Subunit Electron Transfer in Neuronal Nitric-Oxide Synthase. Effect of Calmodulin on Heterodimer Catalysis. J. Biol. Chem. 2001; 276: 30036–30042
  • Crane B.R., Arvai A.S., Ghosh D.K., Wu C., Getzoff E.D., Stuehr D.J., Tainer J.A. Structure of Nitric Oxide Synthase Oxygenase Dimer with Pterin and Substrate. Science 1998; 279: 2121–2126
  • Raman C.S., Li H., Martásek P., Král V., Masters B.S.S., Poulos T.L. Crystal Structure of Constitutive Endothelial Nitric Oxide Synthase: A Paradigm for Pterin Function Involving a Novel Metal Center. Cell 1998; 95: 939–950
  • Fischmann T.O., Hruza A., Niu X.D., Fossetta J.D., Lunn C.A., Dolphin E., Progay A.J., Reichert P., Lundell D.J., Narula S.K., Weber P.C. Structural Characterization of Nitric Oxide Synthase Isoforms Reveals Striking Active-Site Conservation. Nat. Struct. Biol. 1999; 6: 233–242
  • Zhang J., Martásek P., Paschke R., Shea T., Masters B.S.S., Kim J.-J.P. Crystal Structure of the FAD/NADPH-Binding Domain of Rat Neuronal Nitric-Oxide Synthase. Comparisons with NADPH-Cytochrome P450 Oxidoreductase. J. Biol. Chem. 2001; 276: 37506–37513
  • Schmidt H.H.H.W., Pollock J.S., Nakane M., Gorsky L.D., Förstermann U., Murad F. Purification of a Soluble Isoform of Guanylyl Cyclase-Activating Factor Synthase. Proc. Natl Acad. Sci. USA 1991; 88: 365–369
  • Abu-Soud H.M., Stuehr D.J. Nitric Oxide Synthases Reveal a Role for Calmodulin in Controlling Electron Transfer. Proc. Natl Acad. Sci. USA 1993; 90: 10769–10772
  • Cho H.J., Xie Q.-w., Calaycay J., Mumford R.A., Swiderek K.M., Lee T.D., Nathan C. Calmodulin is a Subunit of Nitric Oxide Synthase from Macrophages. J. Exp. Med. 1992; 176: 599–604
  • Schlichting I., Berendzen J., Chu K., Stock A.M., Maves S.A., Benson D.E., Sweet R.M., Ringe D., Petsko G.A., Sligar S.G. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science 2000; 287: 1615–1622
  • Ortiz de Montellano P.R. Oxygen Activation and Transfer. Cytochrome P450: Structure, Function, and Mechanism, P.R. Ortiz de Montellano. 2nd Ed., Plenum Press, New York 1995; 245–303
  • Vaz A., McGinnity D., Coon M. Epoxidation of Olefins by Cytochrome P450: Evidence from Site-Specific Mutagenesis for Hydroperoxo-Iron as an Electrophilic Oxidant. Proc. Natl Acad. Sci. USA 1998; 95: 3555–3560
  • Coon M., Vaz A., McGinnity D., Peng H. Multiple Activated Oxygen Species in P450 Catalysis: Contributions to Specificity in Drug Metabolism. Drug Metab. Dispos. 1998; 26: 1190–1193
  • Toy P.H., Newcomb M., Coon M.J., Vaz A.D.N. Two Distinct Electrophilic Oxidants Effect Hydroxylation in Cytochrome P-450-Catalyzed Reactions. J. Am. Chem. Soc. 1998; 120: 9718–9719
  • Hlavica P., Künzel-Mulas U. Metabolic N-Oxide Formation by Rabbit-Liver Microsomal Cytochrome P-4502B4: Involvement of Superoxide in the NADPH-Dependent N-Oxygenation of N,N-Dimethylaniline. Biochim. Biophys. Acta 1993; 1158: 83–90
  • Ortiz de Montellano P.R., Wilks A. Heme Oxygenase Structure and Mechanism. Iron Porphyrins, Advances in Inorganic Chemistry, G. Sykes, A.G. Mauk, 2000; Vol. 51: 359–407
  • Ortiz de Montellano P.R. Recent Advances in Heme Oxygenase. Curr. Opin. Chem. Biol. 2000; 4: 221–227
  • Wilks A., Ortiz de Montellano P.R. Rat Liver Heme Oxygenase. High Level Expression of a Truncated Soluble Form and Nature of the meso-Hydroxylating Species. J. Biol. Chem. 1993; 268: 22357–22362
  • Wilks A., Torpey J., Ortiz de Montellano P.R. Heme oxygenase (HO-1). Evidence for Electrophilic Oxygen Addition to the Porphyrin Ring in the Formation of Alpha-meso-Hydroxyheme. J. Biol. Chem. 1994; 269: 29553–29556
  • Davydov R.M., Yoshida T., Ikeda-Saito M., Hoffman B.R. Hydroperoxy-Heme Oxygenase Generated by Cryoreduction Catalyzes the Formation of α-meso-Hydroxyheme as Detected by EPR and ENDOR. J. Am. Chem. Soc. 1999; 121: 10656–10657
  • Torpey J., Ortiz de Montellano P.R. Oxidation of the meso-Methylmesoheme Regioisomers by Heme Oxygenase. Electronic Control of the Reaction Regiospecificity. J. Biol. Chem. 1996; 271: 26067–26073
  • Torpey J., Ortiz de Montellano P.R. Oxidation of α-meso-Formylmesoheme by Heme Oxygenase. Electronic Control of the Reaction Regiospecificity. J. Biol. Chem. 1997; 272: 22008–22014
  • Roberts E.S., Vaz A.D.N., Coon M.J. Catalysis by Cytochrome P-450 of an Oxidative Reaction in Xenobiotic Aldehyde Metabolism: Deformylation with Olefin Formation. Proc. Natl Acad. Sci. USA 1991; 88: 8963–8966
  • Fischer R.T., Trzaskos J.M., Magolda R.L., Ko S.S., Brosz C.S., Larsen B. Lanosterol 14 Alpha-Methyl Demethylase. Isolation and Characterization of the Third Metabolically Generated Oxidative Demethylation Intermediate [Published Erratum Appears in J. Biol. Chem. 1991, 266, 14137]. J. Biol. Chem. 1991; 266: 6124–6132
  • Akhtar M., Njar V.C.O., Wright J.N. Mechanistic Studies on Aromatase and Related C–C Bond Cleaving P-450 enzymes. J. Steroid Biochem. Mol. Biol. 1993; 44: 375–387
  • Akhtar M., Corina D., Miller S., Shyadehi A.Z., Wright J.N. Mechanism of the Acyl-Carbon Cleavage and Related Reactions Catalyzed by Multifunctional P-450s: Studies on Cytochrome P-45017α. Biochemistry 1994; 33: 4410–4418
  • Baek K.J., Thiel B.A., Lucas S., Stuehr D.J. Macrophage Nitric Oxide Synthase Subunits. Purification, Characterization, and Role of Prosthetic Groups and Substrate in Regulating Their Association into a Dimeric Enzyme. J. Biol. Chem. 1993; 268: 21120–21129
  • Klatt P., Schmidt K., Lehner D., Glatter O., Bächinger H.P., Mayer B. Structural Analysis of Porcine Brain Nitric Oxide Synthase Reveals a Role for Tetrahydrobiopterin and L-Arginine in the Formation of an SDS-Resistant Dimer. Eur. Mol. Biol. Organ. J. 1995; 14: 3687–3695
  • Rafferty S., Boyington J., Kulansky R., Sun P., Malech H. Stoichiometric Arginine Binding in the Oxygenase Domain of Inducible Nitric Oxide Synthase Requires a Single Molecule of Tetrahydrobiopterin per Dimer. Biochem. Biophys. Res. Commun. 1999; 257: 344–347
  • Klatt P., Schmid M., Leopold E., Schmidt K., Werner E.R., Mayer B. The Pteridine Binding Site of Brain Nitric Oxide Synthase. Tetrahydrobiopterin Binding Kinetics, Specificity, and Allosteric Interaction with the Substrate Domain. J. Biol. Chem. 1994; 269: 13861–13866
  • Rodriguez-Crespo I., Ortiz de Montellano P.R. Human Endothelial Nitric Oxide Synthase: Expression in Escherichia coli, Coexpression with Calmodulin, and Characterization. Arch. Biochem. Biophys. 1996; 336: 151–156
  • Presta A., Siddhanta U., Wu C., Sennequier N., Huang L., Abu-Soud H.M., Erzurum S., Stuehr D.J. Comparative Functioning of Dihydro- and Tetrahydropterins in Supporting Electron Transfer, Catalysis, and Subunit Dimerization in Inducible Nitric Oxide Synthase. Biochemistry 1998; 37: 298–310
  • Mayer B., Wu C., Gorren A.C.F., Pfeiffer S., Schmidt K., Clark P., Stuehr D.J., Werner E.R. Tetrahydrobiopterin Binding to Macrophage Inducible Nitric Oxide Synthase: Heme Spin Shift and Dimer Stabilization by the Potent Pterin Antagonist 4-Amino-Tetrahydrobiopterin. Biochemistry 1997; 36: 8422–8427
  • Pfeiffer S., Gorren A.C.F., Pitters E., Schmidt K., Werner E.R., Mayer B. Allosteric Modulation of Rat Brain Nitric Oxide Synthase by the Pterin-Site Enzyme Inhibitor 4-Aminotetrahydrobiopterin. Biochem. J. 1997; 328: 349–352
  • Crane B.R., Arvai A.S., Ghosh S., Getzoff E.D., Stuehr D.J., Tainer J.A. Structures of the Nω-Hydroxy-L-Arginine Complex of Inducible Nitric Oxide Synthase Oxygenase Dimer with Active and Inactive Pterins. Biochemistry 2000; 39: 4608–4621
  • Bec N., Gorren A.C.F., Voelker C., Mayer B., Lange R. Reaction of Neuronal Nitric-Oxide Synthase with Oxygen at Low Temperature. Evidence for Reductive Activation of the Oxy-Ferrous Complex by Tetrahydrobiopterin. J. Biol. Chem. 1998; 273: 13502–13508
  • Gorren A.C.F., Bec N., Schrammel A., Werner E.R., Lange R., Mayer B. Low-Temperature Optical Absorption Spectra Suggest a Redox Role for Tetrahydrobiopterin in Both Steps of Nitric Oxide Synthase Catalysis. Biochemistry 2000; 39: 11763–11770
  • Hurshman A.R., Krebs C., Edmondson D.E., Huynh B.H., Marletta M.A. Formation of a Pterin Radical in the Reaction of the Heme Domain of Inducible Nitric Oxide Synthase with Oxygen. Biochemistry 1999; 38: 15689–15696
  • Wei C.-C., Want Z.-Q., Wang Q., Meade A.L., Hemann C., Hille R., Stuehr D.J. Rapid Kinetic Studies Link Tetrahydrobiopterin Radical Formation to Heme-Dioxy Reduction and Arginine Hydroxylation in Inducible Nitric-Oxide Synthase. J. Biol. Chem. 2001; 276: 315–319
  • Adak S., Wang Q., Stuehr D.J. Arginine Conversion to Nitroxide by Tetrahydrobiopterin-Free Neuronal Nitric-Oxide Synthase. Implications for Mechanism. J. Biol. Chem. 2000; 275: 33554–33561
  • Moali C., Boucher J.-L., Renodon-Corniere A., Stuehr D.J., Mansuy D. Oxidations of N(Omega)-Hydroxyarginine Analogues and Various N-Hydroxyguanidines by NO Synthase II: Key Role of Tetrahydrobiopterin in the Reaction Mechanism and Substrate Selectivity. Chem. Res. Toxicol. 2001; 14: 202–210
  • Pufahl R.A., Wishnok J.S., Marletta M.A. Hydrogen Peroxide-Supported Oxidation of NG-Hydroxy-L-Arginine by Nitric Oxide Synthase. Biochemistry 1995; 34: 1930–1941
  • Clague M.J., Wishnok J.S., Marletta M.A. Formation of Nδ-Cyanoornithine from NG-Hydroxy-L-Arginine and Hydrogen Peroxide by Neuronal Nitric Oxide Synthase: Implications for Mechanism. Biochemistry 1997; 36: 14465–14473
  • Renodon-Corniére A., Boucher J.-L., Dijols S., Stuehr D.J., Mansuy D. Efficient Formation of Nitric Oxide from Selective Oxidation of N-aryl N′-Hydroxyguanidines by Inducible Nitric Oxide Synthase. Biochemistry 1999; 38: 4663–4668
  • Rusche K.M., Spiering M.M., Marletta M.A. Reactions Catalyzed by Tetrahydrobiopterin-Free Nitric Oxide Synthase. Biochemistry 1998; 37: 15503–15512
  • Cabella C., Gardini G., Corpillo D., Testore G., Bedino S., Solinas S.P., Cravanzola C., Vargiu C., Grillo M.A., Colombatto S. Transport and Metabolism of Agmatine in Rat Hepatocyte Cultures. Eur. J. Biochem. 2001; 268: 940–947
  • Dijols S., Perollier C., Lefevre-Groboillot D., Pethe S., Attias R., Boucher J.-L., Mansuy D. Oxidation of N(Omega)-Hydroxyarginine Analogues by NO-Synthase: The Simple, Non Amino Acid N-Butyl N′-Hydroxyguanidine is Almost as Efficient an NO Precursor as N(Omega)-Hydroxyarginine. J. Med. Chem. 2001; 44: 3199–3202
  • Bredt D.S., Snyder S.H. Isolation of Nitric Oxide Synthetase, a Calmodulin-Requiring Enzyme. Proc. Natl Acad. Sci. USA 1990; 87: 682–685
  • Hellermann G.R., Solomonson L.P. Calmodulin Promotes Dimerization of the Oxygenase Domain of Human Endothelial Nitric-Oxide Synthase. J. Biol. Chem. 1997; 272: 12030–12034
  • Gerber N.C., Rodriguez-Crespo I., Nishida C.R., Ortiz de Montellano P.R. Active Site Topologies and Cofactor-Mediated Conformational Changes of Nitric-Oxide Synthases. J. Biol. Chem. 1997; 272: 6285–6290
  • Gachhui R., Presta A., Bentley D.F., Abu-Soud H.M., McArthur R., Brudvig G., Ghosh D., Stuehr D.J. Characterization of the Reductase Domain of Rat Neuronal Nitric Oxide Synthase Generated in the Methylotrophic Yeast Pichia pastoris. Calmodulin Response is Complete Within the Reductase Domain Itself. J. Biol. Chem. 1996; 271: 20594–20602
  • Matsuda H., Iyanagi T. Calmodulin Activates Intramolecular Electron Transfer Between the Two Flavins of Neuronal Nitric Oxide Synthase Flavin Domain. Biochim. Biophys. Acta 1999; 1473: 345–355
  • Abu-Soud H.M., Yoho L.L., Stuehr D.J. Calmodulin Controls Neuronal Nitric-Oxide Synthase by a Dual Mechanism. Activation of Intra- and Interdomain Electron Transfer. J. Biol. Chem. 1994; 269: 32047–32050
  • Stevens-Truss R., Beckingham K., Marletta M.A. Calcium Binding Sites of Calmodulin and Electron Transfer by Neuronal Nitric Oxide Synthase. Biochemistry 1997; 36: 12337–12345
  • Kobayashi K., Tagawa S., Daff S., Sagami I., Shimizu T. Rapid Calmodulin-Dependent Interdomain Electron Transfer in Neuronal Nitric-Oxide Synthase Measured by Pulse Radiolysis. J. Biol. Chem. 2001; 276: 39864–39871
  • Venema R.C., Sayegh H.S., Kent J.D., Harrison D.G. Identification, Characterization, and Comparison of the Calmodulin-Binding Domains of the Endothelial and Inducible Nitric Oxide Synthases. J. Biol. Chem. 1996; 271: 6435–6440
  • Ruan J., Xie Q., Hutchinson N., Cho H., Wolfe G.C., Nathan C. Inducible Nitric Oxide Synthase Requires Both the Canonical Calmodulin-Binding Domain and Additional Sequences in Order to Bind Calmodulin and Produce Nitric Oxide in the Absence of Free Ca2+. J. Biol. Chem. 1996; 271: 22679–22686
  • Nishida C.R., Ortiz de Montellano P.R. Electron Transfer and Catalytic Activity of Nitric Oxide Synthases. Chimeric Constructs of the Neuronal, Inducible, and Endothelial Isoforms. J. Biol. Chem. 1998; 273: 5566–5571
  • Degtyarenko K.N. Structural Domains of P450-Containing Monooxygenase Systems. Protein Eng. 1995; 8: 737–747
  • Porter T.D., Kasper C.B. Coding Nucleotide Sequence of Rat NADPH-Cytochrome P-450 Oxidoreductase cDNA and Identification of Flavin-Binding Domains. Proc. Natl Acad. Sci. USA 1985; 82: 973–977
  • Porter T.D., Kasper C.B. NADPH-Cytochrome P-450 Oxidoreductase: Flavin Mononucleotide and Flavin Adenine Dinucleotide Domains Evolved from Different Flavoproteins. Biochemistry 1986; 25: 1682–1687
  • Karplus P.A., Daniels M.J., Herriott J.R. Atomic Structure of Ferredoxin-NADP+ Reductase: Prototype for a Structurally Novel Flavoenzyme Family. Science 1991; 251: 60–66
  • Watt W., Tulinsky A., Swenson R.P., Watenpaugh K.D. Comparison of the Crystal Structures of a Flavodoxin in Its Three Oxidation States at Cryogenic Temperatures. J. Mol. Biol. 1991; 218: 195–208
  • Gruez A., Pignol D., Zeghouf M., Coves J., Fontecave M., Ferrer J.-L., Fontecilla-Camps J.C. Four Crystal Structures of the 60 kDa Flavoprotein Monomer of the Sulfite Reductase Indicate a Disordered Flavodoxin-Like Module. J. Mol. Biol. 2000; 299: 199–212
  • Sevrioukova I.F., Li H., Zhang H., Peterson J.A., Poulos T.L. Structure of a Cytochrome P450-Redox Partner Electron-Transfer Complex. Proc. Natl Acad. Sci. USA 1999; 96: 1863–1868
  • Zhao Q., Modi S., Smith G., Paine M., McDonagh P.D., Wolf C.R., Tew D., Lian L.Y., Roberts G.C., Driessen H.P. Crystal Structure of the FMN-Binding Domain of Human Cytochrome P450 Reductase at 1.93 Å Resolution. Protein Sci. 1999; 8: 298–306
  • Salerno J.C., Harris D.E., Irizarry K., Patel B., Morales A.J., Smith S.M., Martasek P., Roman L.J., Masters B.S., Jones C.L., Weissman B.A., Lane P., Liu Q., Gross S.S. An Autoinhibitory Control Element Defines Calcium-Regulated Isoforms of Nitric Oxide Synthase. J. Biol. Chem. 1997; 272: 29769–29777
  • Nishida C.R., Ortiz de Montellano P.R. Autoinhibition of Endothelial Nitric-Oxide Synthase. Identification of an Electron Transfer Control Element. J. Biol. Chem. 1999; 274: 14692–14698
  • Chen P.F., Wu K.K. Characterization of the Roles of the 594–645 Region in Human Endothelial Nitric-Oxide Synthase in Regulating Calmodulin Binding and Electron Transfer. J. Biol. Chem. 2000; 275(17)13155–13163
  • Daff S., Sagami I., Shimizu T. The 42-Amino Acid Insert in the FMN Domain of Neuronal Nitric-Oxide Synthase Exerts Control over Ca2+/Calmodulin-Dependent Electron Transfer. J. Biol. Chem. 1999; 274: 30589–30595
  • Montgomery H.J., Romanov V., Guillemette J.G. Removal of a Putative Inhibitory Element Reduces the Calcium-Dependent Calmodulin Activation of Neuronal Nitric-Oxide Synthase. J. Biol. Chem. 2000; 275: 5052–5058
  • Nishida C.R., Ortiz de Montellano P.R. Control of Electron Transfer in Nitric-Oxide Synthases. Swapping of Autoinhibitory Elements Among Nitric-Oxide Synthase Isoforms. J. Biol. Chem. 2001; 276(23)20116–20124
  • Vermilion J.L., Coon M.J. Highly Purified Detergent-Solubilized NADPH-Cytochrome P-450 Reductase from Phenobarbital-Induced Rat Liver Microsomes. Biochem. Biophys. Res. Commun. 1974; 60: 1315–1322
  • Rafferty S., Malech H.L. High Reductase Activity of Recombinant NOS2 Flavoprotein Domain Lacking the Calmodulin Binding Regulatory Sequence. Biochem. Biophys. Res. Commun. 1996; 220: 1002–1007
  • Roman L.J., Miller R.T., de la Garza M.A., Kim J.-J.P., Masters B.S.S. The C Terminus of Mouse Macrophage Inducible Nitric-Oxide Synthase Attenuates Electron Flow Through the Flavin Domain. J. Biol. Chem. 2000; 275: 21914–21919
  • Roman L.J., Martásek P., Miller R.T., Harris D.E., de la Garza M.A., Shea T.M., Kim J.-J.P., Masters B.S.S. The C Termini of Constitutive Nitric-Oxide Synthases Control Electron Flow Through the Flavin and Heme Domains and Affect Modulation by Calmodulin. J. Biol. Chem. 2000; 275: 29225–29232
  • Butt E., Bernhardt M., Smolenski A., Kotsonis P., Frohlich L.G., Sickmann A., Meyer H.E., Lohmann S.M., Schmidt H.H. Endothelial Nitric-Oxide Synthase (Type III) is Activated and Becomes Calcium Independent upon Phosphorylation by Cyclic Nucleotide-Dependent Protein Kinases. J. Biol. Chem. 2000; 275: 5179–5187
  • Fulton D., Gratton J.P., McCabe T.J., Fontana J., Fujio Y., Walsh K., Franke T.F., Papapetropoulos A., Sessa W.C. Regulation of Endothelium-Derived Nitric Oxide Production by the Protein Kinase Akt. Nature 1999; 399: 597–601
  • Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A.M. Activation of Nitric Oxide Synthase in Endothelial Cells by Akt-Dependent Phosphorylation. Nature 1999; 399: 601–605
  • Michell B.J., Griffiths J.E., Mitchelhill K.I., Rodriguez-Crespo I., Tiganis T., Bozinovski S., Ortiz de Montellano P.R., Kemp B.E., Pearson R.B. The Akt Kinase Signals Directly to Endothelial Nitric Oxide Synthase. Curr. Biol. 1999; 9: 845–848
  • Hayashi Y., Nishio M., Naito Y., Yokokura H., Nimura Y., Hidaka H., Watanabe Y. Regulation of Neuronal Nitric-Oxide Synthase by Calmodulin Kinases. J. Biol. Chem. 1999; 274: 20597–20602
  • Komeima K., Hayashi Y., Naito Y., Watanabe Y. Inhibition of Neuronal Nitric-Oxide Synthase by Calcium/Calmodulin-Dependent Protein Kinase IIα Through Ser847 Phosphorylation in NG108-15 Neuronal Cells. J. Biol. Chem. 2000; 275: 28139–28143

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.