303
Views
29
CrossRef citations to date
0
Altmetric
Research Article

N-OXIDATION OF AROMATIC AMINES BY INTRACELLULAR OXIDASES

, , , &
Pages 549-564 | Published online: 25 Jul 2002

REFERENCES

  • Culp S.J., Roberts D.W., Talaska G., Lang N.P., Fu P.P., Lay J.O., Jr., Teitel C.H., Snawder J.E., Von Tungeln L.S., Kadlubar F.F. Immunochemical, 32P-Postlabeling, and GC/MS Detection of 4-Aminobiphenyl–DNA Adducts in Human Peripheral Lung in Relation to Metabolic Activation Pathways Involving Pulmonary N-Oxidation, Conjugation, and Peroxidation. Mutat. Res. 1997; 378: 97–112
  • Zhou Q., Talaska G., Jaeger M., Bhatnagar V.K., Hayes R.B., Zenzer T.V., Kashyap S.K., Lakshmi V.M., Kashyap R., Dosemeci M., Hsu F.F., Parikh D.J., Davis B., Rothman N. Benzidine–DNA Adduct Levels in Human Peripheral White Blood Cells Significantly Correlate with Levels in Exfoliated Urothelial Cells. Mutat. Res. 1997; 393: 199–205
  • Lakshmi V.M., Hsu F.F., Davis B.B., Zenser T.V. N-Acetylbenzidine–DNA Adduct Formation by Phorbol 12-Myristate-Stimulated Human Polymorphonuclear Neutrophils. Chem. Res. Toxicol. 2000; 13: 785–792
  • Lakshmi V.M., Zenser T.V., Davis B.B. N′-(3′-Monophospho-deoxyguanosin-8-yl)-N-acetylbenzidine Formation by Peroxidative Metabolism. Carcinogenesis 1998; 19: 911–917
  • Tsuruta Y., Subrahmanyam V.V., Marshall W., O'Brien P.J. Peroxidase-Mediated Irreversible Binding of Arylamine Carcinogens to DNA in Intact Polymorphonuclear Leukocytes Activated by a Tumor Promoter. Chem. Biol. Interact. 1985; 53: 25–35
  • Talaska G., Al-Juburi A., Kadlubar F.F. Smoking Related Carcinogen—DNA Adducts in Biopsy Samples of Human Urinary Bladder: Identification of N-(Deoxyguanosine-8yl)-4-aminobiphenyl as a Major Adduct. Proc. Natl Acad. Sci. 1991; 88: 5350–5354
  • Tullis D.L., Dooley K.L., Miller D.W., Baetcke K.P., Kadlubar F.F. Characterization and Properties of the DNA Adducts Formed from N-Methyl-4-aminoazobenzene in Rats During a Carcinogenic Treatment Regimen. Carcinogenesis 1987; 8: 577–583
  • Radomski J.L. The Primary Aromatic Amines: Their Biological Properties and Structure–Activity Relationships. Annu. Rev. Pharmacol. Toxicol. 1979; 19: 129–157
  • Liss G.M., Guirguis S.S. Follow-Up of a Group of Workers Intoxicated with 4,4′-Methylenedianiline. Am. J. Ind. Med. 1994; 26: 117–124
  • Kopelman H., Robertson M.H., Sanders P.G., Ash I. The Epping Jaundice. Br. Med. J. 1966; 1: 514–516
  • Tillmann H.L., van Pelt F.N., Martz W., Luecke T., Welp H., Dorries F., Veuskens A., Fischer M., Manns M.P. Accidental Intoxication with Methylene Dianiline p,p′-Diaminodiphenylmethane: Acute Liver Damage After Presumed Ecstasy Consumption. Clin. Toxicol. 1997; 35: 35–40
  • Seabra V., Timbrell J.A. Modulation of Taurine Levels in the Rat Liver After Methylenedianiline Hepatotoxicity. Toxicology 1997; 122: 193–204
  • Rao T.K., Dorsay G.F., Allen B.E., Epler J.L. Mutagenicity of 4,4′-Methylenedianiline Derivatives in the Salmonella Histidine Reversion Assay. Arch. Toxicol. 1982; 49: 185–190
  • Yun C.H., Shimada T., Guengerich F.P. Contributions of Human Liver Cytochrome P450 Enzymes to the N-Oxidation of 4,4′-Methylene-bis(2-chloroaniline). Carcinogenesis 1992; 13: 217–222
  • Kaderlik K.R., Talaska G., DeBord D.G., Osorio A.M., Kadlubar F.F. 4,4′-Methylene-bis(2-chloroaniline)–DNA Adduct Analysis in Human Exfoliated Urothelial Cells by 32P-Postlabeling. Cancer Epidemiol. Biomark. Prev. 1993; 2: 63–69
  • DeBord D.G., Cheever K.L., Werren D.M., Reid T.M., Swearengin T.F., Savage R.E. Determination of 4,4′-Methylene-bis(2-chloroaniline)–DNA Adduct Formation in Rat Liver and Human Uroepithelial Cells. Fundam. Appl. Toxicol. 1996; 30: 138–144
  • Segerback D., Kadlubar F.F. Characterization of 4,4′-Methylene-bis(2-chloroaniline)–DNA Adducts Formed In Vivo and In Vitro. Carcinogenesis 1992; 13: 1587–1592
  • Swaminathan S., Frederickson S.M., Hatcher J.F., Reznikoff C.A., Butler M.A., Cheever K.L., Savage R.E., Jr. Neoplastic Transformation and DNA-Binding of 4,4′-Methylene-bis(2-chloroaniline) in SV40-Immortalized Human Uroepithelial Cell Lines. Carcinogenesis 1996; 17: 857–864
  • Kadlubar F.F., Dooley K.L., Teitel C.H., Roberts D.W., Benson R.W., Butler M.A., Bailey J.R., Young J.F., Skipper P.W., Tannenbaum S.R. Frequency of Urination and Its Effects on Metabolism, Pharmacokinetics, Blood Hemoglobin Adduct Formation, and Liver and Urinary Bladder DNA Adduct Levels in Beagle Dogs Given the Carcinogen 4-Aminobiphenyl. Cancer Res. 1991; 51: 4371–4377
  • Hammons G.J., Milton D., Stepps K., Guengerich F.P., Tukey R.H., Kadlubar F.F. Metabolism of Carcinogenic Heterocyclic and Aromatic Amines by Recombinant Human Cytochrome P450 Enzymes. Carcinogenesis 1997; 18: 851–854
  • Lakshmi V.M., Zenser T.V., Davis B.B. Rat Liver Cytochrome P450 Metabolism of N-Acetylbenzidine and N,N′-Diacetylbenzidine. Drug Metab. Dispos. 1997; 25: 481–488
  • Hoffmann D., Hoffmann I., El-Bayoumy K. The Less Harmful Cigarette: A Controversial Issue. Chem. Res. Toxicol. 2001; 14: 768–790
  • Kadlubar F.F., Anson J.F., Dooley K.L., Beland F.A. Formation of Urothelial and Hepatic DNA Adducts from Carcinogen 2-Naphthylamine. Carcinogenesis 1981; 2: 467–470
  • O'Brien P.J. Peroxidases. Chem. Biol. Interact. 2000; 129: 113–139
  • Curtis J.F., Tomer K., McGown S., Eling T.E. Prostaglandin H Synthase-Catalyzed Ring Oxygenation of 2-Naphthylamine: Evidence for Two Distinct Oxidation Pathways. Chem. Res. Toxicol. 1995; 8: 875–883
  • Yamazoe Y., Miller D.W., Weis C.C., Dooley K.L., Zenser T.V., Beland F.A., Kadlubar F.F. DNA Adducts Formed by Ring-Oxidation of the Carcinogen 2-Naphthylamine with Prostaglandin H Synthase In Vitro and in the Dog Urothelium In Vivo. Carcinogenesis 1985; 6: 1379–1387
  • Krauss R.S., Angerman-Stewart J., Eling T.E., Dooley K.L., Kadlubar F.F. The Formation of 2-Aminofluorene–DNA Adducts In Vivo: Evidence for Peroxidase-Mediated Activation. J. Biochem. Toxicol. 1989; 4: 111–117
  • Shen J.H., Wegenke M., Wolff T. Capability of Human Blood Cells to Form the DNA Adduct, C8-(N2-Aminofluorenyl)-deoxyguanosine-3′-5′-diphosphate from 2-Aminofluorene. Carcinogenesis 1990; 11: 1441–1444
  • Klaunig J.E., Xu Y., Isenberg J.S., Bachowski S., Kolaja K.L., Jiang J., Stevenson D.E., Walborg E.F., Jr. The Role of Oxidative Stress in Chemical Carcinogenesis. Environ. Health Perspect. 1998; 106(S1)289–295
  • Gautier J.C., Holzhaeuser D., Markovic J., Gremaud E., Schilter B., Turesky R.J. Oxidative Damage and Stress Response from Ochratoxin a Exposure in Rats. Free Radic. Biol. Med. 2001; 30: 1089–1098
  • Oikawa S., Hirosawa I., Hirakawa K., Kawanishi S. Site Specificity and Mechanism of Oxidative DNA Damage Induced by Carcinogenic Catechol. Carcinogenesis 2001; 22: 1239–1245
  • Hirano T., Higashi K., Sakai A., Tsurudome Y., Ootsuyama Y., Kido R., Kasai H. Analyses of Oxidative DNA Damage and Its Repair Activity in the Livers of 3′-Methyl-4-dimethylaminoazobenzene-Treated Rodents. Jpn. J. Cancer Res. 2000; 91: 681–685
  • Subrahmanyam V.V., O'Brien P.J. Peroxidase Catalysed Oxygen Activation by Arylamine Carcinogens and Phenol. Chem. Biol. Interact. 1985; 56: 185–199
  • O'Brien P.J. Radical Formation During the Peroxidase Catalysed Metabolism of Carcinogens and Xenobiotics. Free Radic. Biol. Med. 1988; 4: 169–183
  • Stiborová M., Frei E., Schmeiser H.H., Wiessler M., Hradec J. Formation and 32P-Postlabeling of DNA and tRNA Adducts Derived from Peroxidative Activation of Carcinogenic Azo Dye N,N-Dimethylaminoazobenzene. Carcinogenesis 1992; 13: 1657–1662
  • Miller N.J., Rice-Evans C., Davies M.J., Gopinathan V., Milner A. A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. (Lond.) 1993; 84: 407–412
  • Moldeus P., Hogberg J., Orrenius S. Isolation and Use of Liver Cells. Method Enzymol. 1978; 52: 60–70
  • Eamus R.K., Grunwald R., Lemasters J.J. Rhodamine 123 as a Probe of Transmembrane Potential in Isolated Rat Liver Mitochondria: Spectral and Metabolic Properties. Biochim. Biophys. Acta 1986; 850: 436–448
  • Kadlubar F.F., Fu P.P., Jung H., Shaikh A.U., Beland F.A. The Metabolic N-Oxidation of Carcinogenic Arylamines in Relation to Nitrogen Charge Density and Oxidation Potential. Environ. Health Perspect. 1990; 87: 233–236
  • Huang J., Dunford H.B. One-Electron Oxidative Activation of 2-Aminofluorene by Horseradish Peroxidase Compounds I and II: Spectral and Kinetic Studies. Arch. Biochem. Biophys. 1991; 287: 257–262
  • Silva J.M., Jatoe S.D., O'Brien P.J. Glutathione May Mediate the Cytotoxicity of Some Nitrosoarenes. Prog. Pharmacol. Clin. Pharmacol. 1991; 8: 164–170
  • Eyer P., Gallemann D. Reactions of Nitrosoarenes with SH Groups. The Chemistry of Amino, Nitroso, Nitro and Related Groups, S. Patai. John Wiley & Sons, Chichester 1996; Vol. Suppl. F2, Part 2: 999–1040
  • Kayanis S., McClelland R.A. Electrophilic Intermediates in the Reaction of Glutathione and Nitrosoarenes. J. Am. Chem. Soc. 1992; 114: 3052–3059
  • Silva J.M., O'Brien P.J. Detoxification of Nitroso-N,N-dimethylaniline. Prog. Pharmacol. Clin. Pharmacol. 1991; 8: 171–175
  • Linquist T., Moldeus P., Lindeke B. Cellular Effects of Some Metabolic Oxidation Products Pertinent to 4-Ethoxyaniline. Pharmacol. Toxicol. 1991; 69: 117–121
  • Kamazawa K., Ashida H., Danno G. Comparison in Metabolic Activity of Cytochrome P4501A1 on Hetercyclic Amines Between Human and Rat. J. Agric. Food Chem. 1999; 47: 4956–4961
  • Addya S., Anandatheerthavarada H.K., Biswas G., Bhagwat S.V., Mullick J., Avadhani N.G. Targeting of NH2-Terminal Processed Microsomal Protein to Mitochondria: A Novel Pathways for the Biogenesis of Hepatic Mitochondrial CYP1A1. J. Cell Biol. 1997; 139: 589–599
  • Thomas R.D., Roy D. Mitochondrial Enzyme-Catalyzed Oxidation and Reduction Reactions of Stilbene Estrogen. Carcinogenesis 1995; 16: 891–895
  • Bellis Y.I. Investigation of Aromatic Amines by the Method of Oxidative Polarography. II. J. Gen. Chem. (USSR) 1970; 40: 721–725
  • Hansch C., Hoekman D.H., Leo A. Exploring QSAR. American Chemical Society, Washington, DC 1995
  • Butler M.A., Guengerich F.P., Kadlubar F.F. Metabolic Oxidation of the Carcinogens 4-Aminobiphenyl and 4,4′-Methylene-bis(2-chloroaniline) by Human Hepatic Microsomes and by Purified Rat Hepatic Cytochrome P-450 Monooxygenases. Cancer Res. 1989; 49: 25–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.