218
Views
50
CrossRef citations to date
0
Altmetric
Research Article

QSAR of Cytochrome P450

, , &
Pages 105-156 | Published online: 26 Feb 2004

References

  • Backes W. L., Hogaboom M., Canady W. J. The true hydrophobicity of microsomal cytochrome P‐450 in the rat. J. Biol. Chem. 1982; 257: 4063–4070, [PUBMED], [INFOTRIEVE]
  • Bessems J. G.M., Te Hoppele J. M., van Dijk P. A., van Stee L. L.P., Commandeur J. N.M., Vermeulen M. P.E. Rat liver microsomal P450‐dependent oxidation of 3,/5‐disubstituted analogues of paracetamol. Xenobiotica 1996; 26: 647–666, [PUBMED], [INFOTRIEVE], [CSA]
  • Blake R. C., II, Coon M. J. On the mechanism of action of cytochrome P‐450. J. Biol. Chem. 1980; 255: 4100–4111, [PUBMED], [INFOTRIEVE]
  • Blake R. C., Coon M. Y. On the mechanism of action of cytochrome P‐450. J. Biol. Chem. 1981; 256: 12127–12133, [PUBMED], [INFOTRIEVE]
  • Ceñas N., Anusevicius Z., Bironaite D., Bachmanova G. I., Archakov A. I., Ollinger K. The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants. Arch. Biochem. Biophys. 1994; 315: 400–406, [CSA]
  • Chan F. C.Y., Potter G. A., Barrie S. E., Haynes B. P., Rowland M. G., Houghton J., Jarman M. 3‐ and 4‐ pyridylalkyl adamantane carboxylates: inhibitors of human cytochrome P450 (17a‐hydroxylase/C17, 20)‐lyase. Potential nonsteroidal agents for the treatment of prostatic cancer. J. Med. Chem. 1996; 39: 3319–3323, [PUBMED], [INFOTRIEVE], [CSA]
  • Chubben N. H.P., Peelen S., Borst J.‐W., Vervoort J., Veeger C., Rietjens I. M.C.M. Molecular orbital‐based quantitative structure‐activity relationship for the P450‐catalyzed 4‐hydroxylation of halogenated anilines. Chem. Res. Toxicol. 1994; 7: 590–598, [CSA]
  • Chubben N. H.P., Veroot J., Boersma M. G. The effect of varying halogen substituent patterns on the cytochrome P‐450 catalyzed dehalogenation of 4‐halogenated anilines to 4‐aminophenol metabolites. Biochem. Pharmacol. 1995; 49: 1235–1248, [CSA]
  • Conway C. C., Jiao D., Chung F.‐L. Inhibition of rat liver cytochrome P450 isozymes by isothiocyanates and their conjugates: A structure‐activity relationship study. Carcinogenesis 1996; 17: 2423–2427
  • Deller S., Turner M. K. The effect of n‐alcohols on the activity of cytochrome P450‐BM3. Jubilee Research Event. Nottinghom Inst. Chemical Engineers. 1997
  • Dickings M., Elcombe C. R., Moloney J., Netter K. J., Bridges J. W. Further studies on the dissociation of the isosafriole metabolite‐cytochrome P‐450 complex. Biochem. Pharmacol. 1979; 28: 231–238
  • Dinnocenzo J. P., Karki S. B., Jones J. P. On isotopic effects for the cytochrome P‐450 oxidative of substituted N,N–dimethylanilines. J. Am. Chem. Soc. 1993; 115: 7111–7116
  • Ferrari S., Leemann T., Dayer P. The role of lipophilicity in the inhibition of polymorphic cytochrome P450 11D6 oxidation of β‐blocking agents in vitro. Life Sci. 1991; 48: 2259–2265, [PUBMED], [INFOTRIEVE]
  • Garg R., Kurup A., Mekapati S. B., Hansch C. Searching for allosteric effects via QSAR. Part II. Bioorg. Med. Chem. 2003; 11: 621–628, [PUBMED], [INFOTRIEVE]
  • Guengerich F. P., Willard R. J., Shea J. P., Richards L. E., MacDonald T. L. Mechanism‐based inactivation of cytochrome P‐450 by heteroatom‐substituted cyclopropanes and formation of ring‐opened products. J. Am. Chem. Soc. 1984; 106: 6446–6447
  • Ha‐Duong N. T., Dijols S., Marq‐Soares C., Minoletti C., Dansette P. M., Mansuy D. Synthesis of sulfaphenazole derivatives and their use as inhibitors and tools for comparing the active sites of human liver cytochrome P450 of the 2C subfamily. J. Med. Chem. 2001; 44: 3622–3631, [CSA]
  • Hansch C., Leo A. Exploring QSAR. Fundamentals and Applications in Chemistry and Biology. American Chemical Society, Washington, DC 1996
  • Hansch C., Zhang L. Quantitative structure‐activity relationships of cytochrome P‐450. Drug Metab. Rev. 1993; 25: 1–48, [PUBMED], [INFOTRIEVE]
  • Hansch C., Sinclair J. F., Sinclair P. R. Induction of cytochrome P450 by barbiturates in chick embryo hepatocytes: a quantitative structure analysis. Quant. Struct.‐Act. Relat. 1990; 9: 223–226
  • Hansch C., Steinmetz W. E., Leo A. J., Mekapati S. B., Kurup A., Hoekman D. On the role of polarizability in chemical‐biological interactions. J. Chem. Inf. Comput. Sci. 2003; 43: 120–125, [PUBMED], [INFOTRIEVE], [CSA]
  • Ichikawa Y., Yamano T. The role of the hydrophobic bonding in P450 and the effect of organic compounds on the conversion of P‐450 to P‐420. Biochem. Biophys. Acta 1967; 518–525, [CSA]
  • Fu X.‐C., Jiang H. D., Liu Z.‐Q. Quantitative structure‐activity relationship for p‐amino‐diphenyl ether compounds to interact with cytochrome P450. Chim. Biochem. J. 1994; 10: 11–15, [CSA]
  • Kim S., Ko H., Park J. E., Jung S., Lee S. K., Chum Y.‐J. Design, synthesis, and discovery of novel trans‐stilbene analogues as potent and selective human P450 1B1 inhibitors. J. Med. Chem. 2002; 45: 160–164, [PUBMED], [INFOTRIEVE], [CSA]
  • Komives E. A., Ortiz de Montellano P. R. Mechanism of oxidation of π bonds by cytochrome P‐450. J. Biol. Chem. 1987; 262: 9793–9802, [PUBMED], [INFOTRIEVE]
  • Krainev A. G., Weiner L. M., Alferyev I. S., Slynko N. M. Bifunctional compound study of the active‐center location of cytochrome P‐450 in a microsomal membrane (“float” molecules method). Biochem. Biophys. Acta 1985; 818: 96–104, [PUBMED], [INFOTRIEVE]
  • LaBella F. S., Chen Q.‐M., Stein C. D., Queen G. The site of general anesthesia and cytochrome P450 oxygenases: similarities defined by straight chain and cyclic alcohols. Br. J. Pharm. 1997; 120: 1158–1164, [CSA]
  • Lewis D. F.V., Dickens P. J. Quantitative structure‐activity relationships (QSARs) within a series of inhibitors for mammalian cytochrome P450 (CYPs). J. Enzyme Inhib. 2001; 16: 321–330, [PUBMED], [INFOTRIEVE], [CSA]
  • Lewis D. F.V., Ioannides C., Park D. V. A quantitative structure‐activity relationship study on a series of 10 para‐substituted toluenes binding to cytochrome P‐450 2B4 and their hydroxylation rates. Biochem. Pharmacol. 1995; 50: 619–625, [PUBMED], [INFOTRIEVE], [CSA]
  • Lewis D. F.V. Quantitative structure‐activity relationships in a series of alcohols exhibiting inhibition of cytochrome P‐450‐mediated aniline hydroxylation. Chem.‐Biol. Interact. 1987; 62: 271–280, [CSA]
  • Lewis D. F.V. On the recognition of mammalian microsomal cytochrome P‐450 substrates and their characteristics. Biochem. Pharmacol. 2000; 60: 293–306, [PUBMED], [INFOTRIEVE], [CSA]
  • Lewis D. F.V., Modi S., Dickins M. Quantitative structure‐activity relationships (QSARs) within substrates of human cytochrome P450 involved in drug metabolism. Drug Metab. Dispos. 2001; 18: 221–242
  • Lindeke B., Paulsen‐Sorman U., Hallström G., Khuthier A.‐H., Cho A. K., Kammerer R. C. Cytochrome P‐455nm complex formation in the metabolism of phenylalkylamines. Drug Metab. Dispos. 1982; 10: 700–705, [PUBMED], [INFOTRIEVE]
  • MacDonald T. L., Gutheim W. G., Martin R. B., Gungerich F. P. Oxidation of substituted N,N–dimethylanilines by cytochrome P‐450: estimation of the effective oxidation‐reduction potential of cytochrome P‐450. Biochemistry 1989; 28: 2071–2077, [PUBMED], [INFOTRIEVE]
  • Morgan E. T., Koop D. R., Coon M. J. Catalytic activity of cytochrome P‐450 isozyme 3A isolated from liver microsomes of ethanol‐treated rabbits. J. Biol. Chem. 1982; 257: 13951–13957, [PUBMED], [INFOTRIEVE]
  • Murray M. Inhibition of hepatic drug metabolism by penothiazine tranquilizers: quantitative structure‐activity relationships and selective inhibition of cytochrome P‐450 isoform‐specific activities. Chem. Res. Toxicol. 1989; 2: 240–246, [PUBMED], [INFOTRIEVE]
  • Nambo T. The steric and electrostatic effect of 4‐substituent of N,N–dimethylaniline on the affinity to P‐450 of rabbit. Quant. Struct.‐Act. Relat. 1998; 17: 465–467
  • Peng H. ‐M., Raner G. M., Vaz A. D.N., Coon M. J. Oxidative cleavage of esters and amides by cytochrome P450. Arch. Biochem. Biophys. 1995; 318: 333–339, [PUBMED], [INFOTRIEVE], [CSA]
  • Poso A., Gynther J., Juvonen R. Comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors. J. Comput. Aided Mol. Des. 2001; 15: 195–202, [PUBMED], [INFOTRIEVE], [CSA]
  • Sargent N. S.E., Upshall D. G., Bridges J. W. The relationship between binding to cytochrome P‐450 and metabolism of n‐alkyl carbanates in isolated rat hepatocytes. Biochem. Pharmacol. 1982; 31: 1209–1313
  • Scott J. G., Foroozesh M., Hopkins N. E., Alefantis T. G., Alworth W. L. Inhibition of cytochrome P450 6D1 by alkynylarenes, methylenedioxyarenes and other substituted aromatics. Pestic. Biochem. Physiol. 2000; 67: 6371
  • Shusterman A. J., Johnson A. S. The role of hydrophobicity and electronic factors in regulating alcohol inhibition of cytochrome P‐450‐mediated aniline hydroxylation. Chem.‐Biol. Interact. 1990; 74: 63–77
  • Sinclair J., Cornell N. W., Zaitlin L., Hansch C. Induction of cytochrome P‐450 by alcohols and 4‐substituted pyrazoles. Biochem. Pharmacol. 1986; 35: 707–710, [PUBMED], [INFOTRIEVE], [CSA]
  • Vaz A. D.N., Coon M. J. On the mechanism of action of cytochrome P450: evaluation of hydrogen abstraction in oxygen‐dependent alcohol oxidation. Biochemistry 1994; 33: 6442–6449, [PUBMED], [INFOTRIEVE]
  • Venhorst J., Onderwater R. C.A., Meerman J. H.M., Commandeur J. N.M., Vermeulen N. P.E. Influence of N‐substitution of 7‐methoxy‐4‐(aminomethyl)‐coumarin on cytochrome P450 metabolism and selectivity. Drug Metab. Dispos. 2000; 28: 1524–1532, [PUBMED], [INFOTRIEVE], [CSA]
  • Venhorst J., Ter Laak A. M., Commandeur J. N.M., Funae Y., Hiroi T., Vermeulen N. P.E. Homology modeling of rate and human cytochrome P450 2D (CYP2D)1 isoforms and computational rationalization of experimental ligand‐binding specificities. J. Med. Chem. 2003; 46: 74–86, [PUBMED], [INFOTRIEVE], [CSA]
  • Virginia M., Mason R. P. Correlation of kinetic parameters of nitroreductase enzymes with redox properties of nitroaromatic compounds. J. Biol. Chem. 1989; 264: 12379–12384
  • Wachall B. G., Hector M., Zhuange Y., Hartman R. W. Imidazole substituted biphenyls: a new class of highly potent and in vivo active inhibitors of P450 17 as potential therapeutics for treatment of prostate cancer. Bioorg. Med. Chem. 1999; 7: 1913–1924, [PUBMED], [INFOTRIEVE]
  • Wang Y., Olson M. J., Baker M. T. Interaction of fluoroethane chlorofluorocarbon (CFC) substitutes with microsomal cytochrome p450. Biochem. Pharmacol. 1993; 46: 87–94, [PUBMED], [INFOTRIEVE]
  • Watanabe Y., Iyanagi T., Oae S. Kinetic study on enzymic 5‐oxygenation promoted by a reconstituted system with purified cytochrome P‐450. Tetra. Lett. 1980; 21: 3685–3688
  • Watanabe Y., Iyanagi T., Ore S. One electron transfer mechanism in the enzymatic oxydation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P‐450. Tetra. Lett. 1982a; 23: 533–536
  • Watanabe Y., Oae S., Iyanagi T. Mechanisms of enzymatic S–oxygenation of thioanisole derivatives and O–demethylation of anisole derivatives promoted by both microsomes and a reconstituted system with purified cytochrome P‐450. Bull. Chem. Soc. Jpn. 1982b; 55: 188–195
  • White R. E., McCarthy M. B. Active site mechanics of liver microsomal cytochrome P‐450. Arch. Biochem. Biophys. 1986; 246: 19–32, [PUBMED], [INFOTRIEVE]
  • Zhuang Y., Wachall B. G., Hartman R. W. Novel Imidazolyl and Triazolyl Substituted Biphenyl Compounds: Synthesis and Evaluation as Nonsteroidal Inhibitors of Human 17α Hydroxylase‐C17, 20‐Lyase (P450 17)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.