435
Views
62
CrossRef citations to date
0
Altmetric
Research Article

Xenobiotic Metabolism and the Mechanism(s) of Benzene Toxicity

, Ph.D.
Pages 531-547 | Published online: 25 Oct 2004

References

  • Alvares A. P., Schilling G. R., Levin W., Kuntzman R. Studies on the induction of CO‐binding pigments in liver microsomes by phenobarbital and 3‐methylcholanthrene. Biochem. Biophys. Acta. 1967; 29: 521–526
  • Andrews L. S., Lee E. W., Witmer C. M., Kocsis J. J., Snyder R. Effects of toluene on the metabolism, disposition and hemopoietic toxicity of 3H‐benzene. Biochem. Pharmacol. 1977; 26: 293–300, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Axelrod J. Journey of a late blooming biochemical neuroscientist. J. Biol. Chem. 2003; 278: 1–13, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bakke O. M., Scheline R. R. Hydroxylation of aromatic hydrocarbons in the rat. Toxicol. Appl. Pharmacol. 1970; 16: 691–700, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bechtold W. E., Sun J. D., Birnbaum L. S., Yin S. N., Li G. L., Kasicki S., Lucier G., Henderson S. F. S‐Phenylcysteine formation in hemoglobin as a biological exposure index to benzene. Arch. Toxicol. 1992a; 66: 303–309, [PUBMED], [INFOTRIEVE]
  • Bechtold W. E., Willis J. K., Sun J. D., Griffith W. C., Reddy T. V. Biological markers of exposure to benzene: S‐phenylcysteine in albumin. Carcinogenesis 1992b; 3: 1217–1220
  • Brunmark A., Cadenas E. Reductive addition of glutathione to p‐benzoquinone, 2‐hydroxy‐p‐benzoquinone, and p‐benzoquinone epoxides. Effect of the hydroxyl‐ and glutathionyl substituents on p‐benzoquinone autooxidation. Chem. Biol. Interact. 1988; 68: 273–298, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Brunmark A., Cadenas E., Segura‐Aguilar J., Lind C., Ernster L. DT‐diaphorase‐catalyzed two‐electron reduction of various p‐benzoquinone‐ and 1,4‐naphthoquinones epoxides. Free Radic. Biol. Med. 1988; 5: 133–143, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Chen H., Eastmond D. A. Topoisomerase inhibition by phenolic metabolites: a potential mechanism for benzene's clastogenic effects. Carcinogenesis 1995; 16: 2301–2307, [PUBMED], [INFOTRIEVE]
  • Conney A. H. Induction of drug metabolizing enzymes: a path to the discovery of multiple cytochromes P450. Ann. Rev. Pharmacol. Toxicol. 2003; 43: 1–30, [CSA], [CROSSREF]
  • Conney A. H., Klutch A. Increased activity of androgen hydroxylases in liver microsomes of rats pretreated with phenobarbital and other drugs. J. Biol. Chem. 1963; 238: 1611–1617, [PUBMED], [INFOTRIEVE]
  • Conney A. H., Miller A. C., Miller J. A. The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3‐methylcholanthrene. Cancer Res. 1956; 16: 450–459, [PUBMED], [INFOTRIEVE]
  • Cooper D. Y., Levin S., Narasimulu S., Rosenthal O., Estabrook R. W. Photochemical action spectrum of mixed function oxidase systems. Science (Washington, DC) 1967; 147: 400–402
  • Erslev A. J. Effect of erythropoietin on the uptake and utilization of iron by bone marrow cells in vitro. Proc. Soc. Exp. Biol. Med. 1962; 110: 615–620, [PUBMED], [INFOTRIEVE]
  • Estabrook R. W., Cooper D. Y., Rosenthal O. The light reversible carbon monoxide inhibition of the steroid C‐21 hydroxylation system of the adrenal cortex. Biochem. Z. 1963; 338: 741–755, [PUBMED], [INFOTRIEVE]
  • Fouts J. R. Factors influencing the metabolism of drugs in liver microsomes. Ann. N.Y. Acad. Sci. 1963; 104: 875–880
  • French J. E., Saulnier M. Benzene leukemogenesis: an environmental carcinogen‐induced tissue‐specific model of neoplasia using genetically altered mouse models. J. Toxicol. Environ. Health 2000; 61: 377–379, [CROSSREF]
  • Garfinkel D. Studies in pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch. Biochem. Biophys. 1958; 71: 111–120, [CROSSREF]
  • Goldstein B. D., Witz G., Javid J., Amoruso M., Rossman T., Wolder B. Muconaldehyde, a potential toxic intermediate of benzene metabolism. Biological Reactive Intermediates‐II: Chemical Mechanisms and Biological Effects, R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, C. M. Witmer. Plenum Press, New York 1982; 331–339
  • Gonasun L. M., Witmer C., Kocsis J. J., Snyder R. Benzene metabolism in mouse liver microsomes. Toxicol. Appl. Pharmacol. 1973; 26: 398–406, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gorsky L. D., Coon M. J. Evaluation of the role of free hydroxyl radicals in the cytochrome P‐450‐catalyzed oxidation of benzene and cyclohexanol. Drug. Meta. Dispos. 1985; 13: 169–174, [CSA]
  • Griffiths J. C., Kalf G. F., Snyder R. The metabolism of benzene and phenol by a reconstituted purified phenobarbital(PB)‐induced rat liver mixed function oxidase system. Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Disease, J. J. Kocsis, D. J. Jollow, C. M. Witmer, J. O. Nelson, R. Snyder. Plenum Press, New York 1986; 213–235
  • Hayaishi O. History and scope. Oxygenases, O. Hayaishi. Academic Press, New York 1962; 1–29
  • Hazel B. A., Kalf G. F. Induction of granulocytic differentiation in myeloblasts by hydroquinone, a metabolite of benzene, involves the leukotriene D4 receptor. Receptor Signal Transduct. 1996a; 6: 1–12, [CSA]
  • Hazel B. A., Kalf G. F. Hydroquinone, a bioreactive metabolite of benzene, inhibits apoptosis in myeloblasts. Stem Cells 1996b; 14: 730–742, [PUBMED], [INFOTRIEVE]
  • Hazel B. A., O'Connor A., Niculescu R., Kalf G. F. Benzene and its metabolite, hydroquinone, induce granulocytic differentiation in myeloblasts by interacting with cellular signaling pathways activated by granulocte colony stimulating factor. Stem Cells 1995; 13: 295–310, [PUBMED], [INFOTRIEVE]
  • Hedli C. C. Metabolism of [14C]phenol in the isolated perfused mouse liver. Toxicol. Sci. 1999; 49: 40–47, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hedli C. C., Rao N. R., Reuhl K. R., Witmer C. M., Snyder R. Effects of benzene metabolite treatment on granulocytic differentiation and DNA adduct formation in HL‐60 cells. Arch. Toxicol. 1996; 70: 135–145, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hedli C. C., Hoffmann M. J., Ji S., Thomas P. E., Snyder R. Benzene metabolism in the isolated perfused mouse liver. Toxicol. Appl. Pharmacol. 1997; 146: 60–68, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hoffmann M. J., Ji S., Hedli C. C., Snyder R. Metabolism of [14C]phenol in the isolated perfused mouse liver. Toxicol. Sci. 1999; 49: 40–47, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hoffmann M. J., Kim D. D., Akbar M. G., Kalf G. F., Snyder R. The potential role of topoisomerase II inhibition in hydroquinone‐induced alterations in the maturation of mouse myoblasts. Biological Reactive Intermediates VI: Chemical and Biological Mechanisms in Susceptibility to and Prefention of Environmental Diseases, P. M. Dansette, R. Snyder, M. Delaforge, G. G. Gibson, H. Greim, D. J. Jollow, T. J. Monks, I. G. Sipes. Kluwer Academic/Plenum Publishers, New York 2001a; 315–318
  • Hoffmann M. J., Sinko P. J., Lee Y. H., Meeker R. J., Snyder R. Pharmacokinetic studies in Tg.AC and FVB mice administered [14C]benzene either by oral gavage or intradermal injection. Toxicol. Appl. Pharmacol. 2001b; 174: 139–145, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hunter D. The Diseases of Occupations. Little Brown and Company Boston. 1962
  • Hutt A. M., Kalf G. F. Inhibition of humn DNA topoisomerase II by hydroquinone and p‐benzoquinone, reactive metabolites of benzene. Environ. Health Perspect. 1996; 104(Suppl. 6)1265–1269, [PUBMED], [INFOTRIEVE]
  • Irons R. D., Neptun D. A., Pfiefer R. W. Inhibition of lymphocyte transformation and microtubule assembly by quinine metabolites of benzene. J. Reticuloendothel. Soc. 1981; 30: 359–372, [PUBMED], [INFOTRIEVE], [CSA]
  • Jerina D. M., Daly J. W. Arene oxides: a new aspect of drug metabolism. Science 1974; 185: 573–582, [PUBMED], [INFOTRIEVE]
  • Jowa L., Winkle S., Witz G., Kalf G. F., Snyder R. Synthesis and characterization of deoxyguanosine‐benzoquinone adducts. J. Appl. Toxicol. 1990; 10(1)47–54, [PUBMED], [INFOTRIEVE], [CSA]
  • Kalf G. F., O'Connor A. The effects of benzene and hydroquinone on myeloid differentiation of HL‐60 promyelocytic leukemia cells. Leuk. Lymphoma. 1993; 11: 331–338, [PUBMED], [INFOTRIEVE], [CSA]
  • Kalf G. F., Snyder R. A survey of studies on benzene‐induced human leukemogenesis. Advances in Occupational Medicine and Leukemogenesis, M. Imbriani, S. Ghittori, Pezzagno. G. Capodaglio. Fondazione Salvatore Mugeri Edizioni, Pavia 1995; 39–68
  • Kalf G. F., Renz J. F., Niculescu R. p‐Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre‐interleukins‐1 alpha and ‐1 beta tpo active cytokines by inhibition of the processing enzymes calpain and interleukin‐1 beta converting enzyme. Environ. Health Perspect. 1996; 104(Suppl. 6)1251–1256, [PUBMED], [INFOTRIEVE]
  • Kanigel R. Apprentice to Genius. McMillan Publishing Company. 1986
  • Keilin D. The History of Cell Respiration. Cambridge University Press, London 1966
  • Klingenberg M. Pigments of rat liver microsomes. Arch. Biochem. Biophys. 1958; 75: 376–386, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kornberg A. For the Love of Enzymes. Harvard University Press, Cambridge 1989
  • Laura P. J., Mayeux P. R., Hinson J. A. Acetaminophen‐induced hepatotoxicity. Drug. Metab. Dispos. 2003; 31: 1499–1506, [CSA], [CROSSREF]
  • Lee E. W., Kocsis J. J., Snyder R. Dose dependent inhibition of 59Fe incorporation into erythrocytes after a single dose of benzene. Res. Commun. Chem. Pathol. Pharmacol. 1973; 5: 547–550, [PUBMED], [INFOTRIEVE]
  • Lee E. W., Kocsis J. J., Snyder R. Benzene: acute effect on 59Fe incorporation into circulating erythrocytes. Toxicol. Appl. Pharmacol. 1974; 27: 431–436, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Levay G., Ross D., Bodell W. J. Peroxidase activation of hydroquinone results in the formation of DNA adducts in HL‐60 cells, mouse bone marrow macrophages, and human bone marrow. Carcinogenesis 1993; 14: 2329–2334, [PUBMED], [INFOTRIEVE]
  • Levay G., Pathak D. N., Bodell W. J. Detection of adducts in white blood cells of B6C3F1 mice treated with benzene. Carcinogenesis 1996; 17: 151–153, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lindstrom A. B., Yeowell‐O'Connel K., Waidyanatha D., Golding B. T., Tornero‐Velez R., Rappaport S. M. Measurement of benzene oxide in the blood of rats following administration of benzene. Carcinogenesis 1997; 18: 1637–1641, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lipmann F. Wanderings of a Biochemist. Wiley‐Interscience, New York 1971
  • Longacre S. L., Kocsis J. J., Witmer C. M., Lee E. W., Sammett D., Snyder R. Toxicological and biochemical effects of repeated administration of benzene in mice. Toxicol. Environ. Health 1981a; 7: 223–237
  • Longacre S. L., Kocsis J. J., Snyder R. Influence of strain differences in mice on the metabolism and toxicity of benzene. Toxicol. Appl. Pharmacol. 1981b; 60: 398–409, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lu A. Y. H., Coon M. J. Role of heme‐protein P‐450 in fatty acid ω‐hydroxylation in a soluble enzyme system from liver microsomes. J. Biol. Chem. 1968; 243: 1331–1332, [PUBMED], [INFOTRIEVE]
  • Lutz W. K. In vivo covalent binding of organic chemicals to DNA as a quantitative indicator in the process of chemical carcinogenesis. Mutat. Res. 1979; 65: 289–356, [PUBMED], [INFOTRIEVE]
  • Lutz W. K. Constitutive and carcinogen‐derived DNA binding as a basis for the assessment of potency of chemical carcinogenesis. Biological Reactive Intermediates‐II: Chemical Mechanisms and Biological Effects, R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, C. M. Witmer. Plenum Press, New York 1982; 1349–1365
  • Lutz W. K., Schlatter C. Mechanism of the carcinogenic action of benzene: irreversible binding to rat liver DNA. Chem. Biol. Interact. 1977; 18: 241–245, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mason H. S. Mechanism of oxygen metabolism. Advances in Enzymology, F. F. Nord. Academic Press, New York 1957; 79–234
  • Miller E. C., Miller J. A. Mechanisms of carcinogenesis: nature of proximte carcinogens and interaction with macromolecules. Pharmacol. Rev. 1966; 18: 805–838, [PUBMED], [INFOTRIEVE]
  • Miller J. A., Miller E. C. The concept of reactive electrophilic metabolites in chemical carcinogenesis: recent results with aromatic amines, safrole, and aflatoxin B1. Biological Reactive Intermediates I: Formation, Toxicity, and Inactivation, D. J. Jollow, J. J. Kocsis, R. Snyder, H. Vainio. Plenum Press, New York 1977; 6–24
  • Mitchell J. R., Jollow D. J., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen‐induced hepatic necrosis. I. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 1973; 187: 195–202, [PUBMED], [INFOTRIEVE]
  • Moran J. L., Siegel D., Ross D. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc. Natl. Acad. Sci. 1999; 96: 8150–8155, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Nicolescu R., Kalf G. F. A morphological analysis of the short‐term effects of benzene on the development of the hematological cells oin the bone marrow of mice and the effects of interleukin‐1 alpha on the process. Arch. Toxicol. 1995; 69: 141–148, [CROSSREF]
  • Nicolescu R., Bradford H. N., Colman R. W., Kalf G. F. Inhibition of the conversion of pre‐interleukin‐1α and 1β to mature cytokines by p‐benzoquinone, a metabolite of benzene. Chem. Biol. Interact. 1995; 98: 211–222, [CSA]
  • Nicolescu R., Renz J. F., Kalf G. F. Benzene‐induced bone marrow depression caused by inhibition of the conversion of pre‐interleukins‐1‐alpha and ‐1beta to active cytokines by hydroquinone, biological reactive metabolite of benzene. Adv. Exp. Med. Biol. 1996; 387: 329–337, [CSA]
  • Omura T., Sato R. A new cytochrome in liver microsomes. J. Biol. Chem. 1962; 237: 1375–1376, [PUBMED], [INFOTRIEVE]
  • Orezchowski A., Schwarz L. R., Schwegler U., Bock K. H., Snyder R. Benzene metabolism in rodent hepatocytes:role of sulfate conjugation. Xenobiotica 1995; 25: 1093–1102, [CSA]
  • Parke D. V. Personal reflections on 50 years of study of benzene toxicology. Environ. Health Perspect. 1996; 104(Suppl. 6)1123–1128, [PUBMED], [INFOTRIEVE]
  • Parke D. V., Williams R. T. Studies in detoxication 49. The metabolism of benzene containing [14C1] benzene. Biochem. J. 1953; 54: 231–238, [PUBMED], [INFOTRIEVE]
  • Post G., Snyder R. Effects of enzyme induction on microsomal benzene metabolism. J. Toxicol. Environ. Health 1983a; 11: 811–825, [PUBMED], [INFOTRIEVE]
  • Post G., Snyder R. Fluoride stimulation of microsomal benzene metabolism. J. Toxicol. Environ. Health 1983b; 11: 799–810, [PUBMED], [INFOTRIEVE]
  • Ramazzini B. De Morbis Artificum Diatriba (A Discourse on the Diseases of Workers), Translated by W.C. Wright, (Originally Published at Modena, 1700) The New York Academy of Sciences. Hafner Publishing Company, New York 1964
  • Reddy M. V., Gupta R. C., Randerath E., Randerath K. 32P‐postlabeling test for covalent DNA binding of chemicals in vivo:application to a variety of aromatic carcinogens and methylating agents. Carcinogenesis 1984; 5: 231–243, [PUBMED], [INFOTRIEVE]
  • Reddy M. V., Schultz S. C., Blackburn G. R., Mackerer C. R. Lack of DNA adduct formation in mice treated with benzene. Mutat. Res. 1994; 325: 149–155, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Remmer H. Die Beschleunigung des Evipamoxydation unter der Wirkung von Barbituraten. Naturwissenschaften 1958; 45: 189, [CROSSREF]
  • Remmer H., Merker H. J. Drug‐induced changes in the liver endopasmic reticulum: association with drug‐metabolizing enzymes. Science 1963; 142: 1657–1658, [PUBMED], [INFOTRIEVE]
  • Remmer H., Merker H. J. Effect of drugs on the formation of smooth endoplasmic reticulum and drug‐metabolizing enzymes. Ann. N.Y. Acad. Sci. 1965; 123: 79–97, [PUBMED], [INFOTRIEVE]
  • Renz J. F., Kalf G. F. Role for interleukin‐1 (IL‐1) in benzene‐induced hematotoxicity: inhibition of conversion of pre‐IL‐1 alpha to mature cytokine in murine macrophages by hydroquinone and prevention of benzene‐induced hematotoxicity in mice by IL‐1 alpha. Blood 1991; 78: 938–944, [PUBMED], [INFOTRIEVE]
  • Rothman N., Smith M. T., Hayes R. B., Traver R. D., Hoener B., Campleman S., Li G. L., Dosemeci M., Linet M., Zhang L., Xi L., Wacholder S., Lu W., Meyer K. B., Titenko‐Holland N., Stewart J. T., Yin S., Ross D. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C → T mutation and rapid fractional excretion of chloroxazone. Cancer Res. 1997; 57: 2839–2842, [PUBMED], [INFOTRIEVE]
  • Saito F. U., Kocsis J. J., Snyder R. Effect of benzene on hepatic drug metabolism and ultrastructure. Toxicol. Appl. Pharmacol. 1970; 26: 209–217, [CROSSREF]
  • Sammett D., Lee E. W., Kocsis J. J., Snyder R. Partial hepatectomy reduces both metabolism and toxicity of benzene. J. Toxicol. Environ. Health 1979; 5: 785–792, [PUBMED], [INFOTRIEVE]
  • Santesson C. G. Über chronische Toxicol. Appl. Pharmacol. ergiftungen mit Steinkohlenteerbenzin: vier Todesfälle. Arch. Hyg. Berl. 1897; 31: 336–376
  • Schoenfeld H. A., Witz G. Structure‐activity relationships in the induction of DNA‐protein cross‐links by hematotoxic ring‐opened benzene metabolites and related compounds in HL‐60 cells. Toxicol. Lett. 2000; 116: 79–88, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Schrenk D., Bock K. W. Metabolism of benzene in rat hepatocytes. Influence of inducers on phenylglucuronides. Drug Metab. Dispos. 1990; 18: 720–725, [PUBMED], [INFOTRIEVE]
  • Schrenk D., Ingelman‐Sundberg M., Bock K. W. Influences of P‐4502E1 induction on benzene metabolism ib rat hepatocytes and on biliary metabolite excretion. Drug Metab. Dispos. 1992; 20: 137–141, [PUBMED], [INFOTRIEVE], [CSA]
  • Schwartz C., Snyder R., Kalf G. F. The inhibition of mitochondrial DNA replication in vitro by the metabolites of benzene, hydroquinone and p‐benzoquinone. Chem. Biol. Interactions 1985; 53: 327–350
  • Smith M., Zhang L., Rothman N., Wang Y., Hayes R. B., Li G., Wiemels J., Dosemeci M., Titenko‐Holland N., Xi L., Klachana P., Yin S., Rothman N. Increased translocations and aneusomy in chromosomes 8 and 21 among workers exposed to benzene. Cancer Res. 1998; 58: 2176–2181, [PUBMED], [INFOTRIEVE]
  • Snyder R. Microsomal enzyme induction. Toxicol. Sci. 2000; 55: 233–234, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Snyder R. Benzene and leukemia. CRC Crit. Rev. Toxicol. 2002; 32(3)155–210
  • Snyder R., Kocsis J. J. Current concepts of chronic benzene toxicity. CRC Crit. Rev. Toxicol. 1975; 3: 265–288, [PUBMED], [INFOTRIEVE]
  • Snyder R., Remmer H. Classes of hepatic microsomal mixed function oxidase inducers. Pharmacol. Ther. 1979; 7(2)203–244, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Snyder R., Kalf G. F. A perspective on benzene leukemogenesis. CRC Crit. Rev. Toxicol. 1994; 24(3)177–209
  • Snyder R., Hedli C. C. An overview of benzene metabolism. Environ. Health Perspect. 1996; 104(Suppl. 6)1165–1171, [PUBMED], [INFOTRIEVE]
  • Snyder R., Uzuki F., Gonasun L., Bromfeld E., Wells A. The metabolism of benzene in vitro. Toxicol. Appl. Pharmacol. 1967; 11: 346–360, [CROSSREF]
  • Snyder R., Lee E. W., Kocsis J. J. Evidence for in vivo formation of a reactive metabolite of 3H‐benzene. Toxicol. Appl. Pharmacol. 1978; 45: 105, [CROSSREF]
  • Snyder R., Longacre S. L., Witmer C. M., Kocsis J. J. Metabolic correlates of benzene toxicity. Biological Reactive Intermediates II: Chemical Mechanisms and Biological Effects, R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, C. M. Witmer. Plenum Publishing Co., New York 1982; 245–256
  • Snyder R., Dimitriadis E., Guy R., Hu P., Cooper K. R., Bauer H., Witz G., Goldstein B. D. Studies on the mechanism of benzene toxicity. Environ. Health Perspect. 1989; 82: 31–35, [PUBMED], [INFOTRIEVE]
  • Snyder R., Chepiga T., Yang C. S., Thomas H., Platt K., Oesch F. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Toxicol. Appl. Pharmacol. 1993; 122: 172–181, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Subrahmanyam V. V., Kolachana P., Smith M. T. Metabolism of hydroquinone by human myeloperoxidase: mechanisms of stimulation by other phenolic compounds. Arch. Biochem. Biophys. 1991; 286: 76–84, [PUBMED], [INFOTRIEVE], [CSA]
  • Warburg O. Heavy Metal Prosthetic Groups and Enzyme Action. Clarendon Press, Oxford 1966
  • Witmer C., Santoyo M., Snyder R., Kocsis J. J. Effect of ATP and F on 14C‐benzene metabolism. Pharmacologist 1971; 13: 193
  • Yoon B. I., Li G. X., Kitada K., Kawasaki Y., Kodama Y., Inoue T., Kobayashi K., Kanno J., Kim D. Y., Inoue T., Hirabayashi Y. Mechanisms of benzene‐induced hematotoxicity and leukemogenicity: cDNA microarray analyses using mouse bone marrow tissue. Environ. Health Perspect. 2003; 111: 1411–1420, [PUBMED], [INFOTRIEVE], [CSA]
  • Zampaglione N., Jollow D. J., Mitchell J. R., Stripp B., Gillette J. R. Role of detoxifying enzymes in bromobenzene‐induced liver necrosis. J. Pharmacol. Exp. Ther. 1973; 187: 218–227, [PUBMED], [INFOTRIEVE]
  • Zhang L., Rothman N., Wang Y., Hayes R. B., Li G., Dosemeci M., Yin S., Klachana P., Titenko‐Holland N., Smith M. Increased aneusomy and long arm delection of chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene. Carcinogenesis 1998; 19: 955–961

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.