1,518
Views
65
CrossRef citations to date
0
Altmetric
Research Article

The Metabolic Fate of Amitriptyline, Nortriptyline and Amitriptylinoxide in Man

Pages 723-746 | Published online: 25 Oct 2004

References

  • Åsberg M., Cronholm B., Sjöqvist F., Tuck D. Relationship between plasma level and therapeutic effect of nortriptyline. Br. Med. J. 1971; 3: 31–34
  • Alexanderson B., Borgå O. Urinary excretion of nortriptyline and five of its metabolites in man after single and multiple oral doses. Eur. J. Clin. Pharmacol. 1973; 5: 174–180, [CROSSREF]
  • Alexanderson B., Price Evans D. A., Sjöqvist F. Steady‐state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br. Med. J. 1969; 4: 764–768, [PUBMED], [INFOTRIEVE]
  • Baier‐Weber B., Prox A., Wachsmuth H., Breyer‐Pfaff U. Glucuronides of hydroxylated metabolites of amitriptyline and nortriptyline isolated from rat bile. Drug Metab. Dispos. 1988; 16(3)490–496
  • Balant‐Gorgia A. E., Schulz P., Dayer P., Balant L., Kubli A., Gertsch C., Garrone G. Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Arch. Psychiatr. Nervenkr. 1982; 232: 215–222
  • Baumann P. Pharmacokinetic‐pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin. Pharmacokinet. 1996; 31(6)444–469, [PUBMED], [INFOTRIEVE]
  • Baumann P., Jonzier‐Perey M., Koeb L., Küpfer A., Tinguely D., Schöpf J. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int. Clin. Psychopharmacol. 1986; 1: 102–112, [PUBMED], [INFOTRIEVE]
  • Baumann P., Meyer J. W., Amey M., Baettig D., Bryois C., Jonzier‐Perey M., Koeb L., Monney C., Woggon B. Dextromethorphan and mephenytoin phenotyping of patients treated with thioridazine or amitriptyline. Ther. Drug Monit. 1992; 14: 1–8, [PUBMED], [INFOTRIEVE]
  • Becher B., Fischer W., Taneri Z., Scholz E., Müller W. E., Breyer‐Pfaff U. Urinary metabolites of amitriptylinoxide and amitriptyline in single‐dose experiments and during continuous therapy. Psychopharmacology 1992; 106: 303–310, [PUBMED], [INFOTRIEVE]
  • Beckett A. H., Al‐Sarraj S. Metabolism of amitriptyline, nortriptyline, imipramine and desipramine to yield hydroxylamines. J. Pharm. Pharmacol. 1973; 25(4)335–336, [PUBMED], [INFOTRIEVE]
  • Beckett A. H., Hutt A. J. In vitro metabolism in the rabbit of desipramine and nortriptyline to yield carboxylic acids. J. Pharm. Pharmacol. 1982; 34(9)614, [PUBMED], [INFOTRIEVE]
  • Bertilsson L., Alexanderson B. Stereospecific hydroxylation of nortriptyline in man in relation to interindividual differences in its steady‐state plasma level. Eur. J. Clin. Pharmacol. 1972; 4: 201–205, [CROSSREF]
  • Bertilsson L., Mellström B., Sjöqvist F. Pronounced inhibition of noradrenaline uptake by 10‐hydroxy‐metabolites of nortriptyline. Life Sci. 1979; 25: 1285–1292, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bertilsson L., Eichelbaum M., Mellström B., Säwe J., Schulz H. U., Sjöqvist F. Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci. 1980; 27: 1673–1677, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bertilsson L., Nordin C., Otani K., Resul B., Scheinin M., Siwers B., Sjöqvist F. Disposition of single oral doses of E‐10‐hydroxynortriptyline in healthy subjects, with some observations on pharmacodynamic effects. Clin. Pharmacol. Ther. 1986; 40(3)261–267, [PUBMED], [INFOTRIEVE]
  • Bertilsson L., Dahl M. L., Dalén P., Al‐Shurbaji A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br. J. Clin. Pharmacol. 2002; 53: 111–122, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bhagwat S. V., Bhamre S., Boyd M. R., Ravindranath V. Cerebral metabolism of imipramine and a purified flavin‐containing monooxygenase from human brain. Neuropsychopharmacology 1996; 15(2)133–142, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bickel M. H. Liver metabolic reactions: tertiary amine N‐dealkylation, tertiary amine N‐oxidation, N‐oxide reduction, and N‐oxide N‐dealkylation. Arch. Biochem. Biophys. 1971; 148: 54–62, [CROSSREF]
  • Bickel M. H. Metabolism of antidepressants. Psychotropic Agents, Part I, F. Hoffmeister, G. Stille. Handbook of Experimental Pharmacology, Springer, Berlin Heidelberg New York 1980; Vol. 55: 551–572
  • Bock J. L., Giller E., Gray S., Jatlow P. Steady‐state plasma concentrations of cis‐ and trans‐10‐OH amitriptyline metabolites. Clin. Pharmacol. Ther. 1982; 31(5)609–616, [PUBMED], [INFOTRIEVE]
  • Breyer‐Pfaff U., Nill K. Stereoselective reversible ketone formation from 10‐hydroxylated nortriptyline metabolites in human liver. Xenobiotica 1995; 25(12)1311–1325
  • Breyer‐Pfaff U., Nill K. High‐affinity stereoselective reduction of the enantiomers of ketotifen and of ketonic nortriptyline metabolites by aldo‐keto reductases from human liver. Biochem. Pharmacol. 2000; 59: 249–260, [CROSSREF]
  • Breyer‐Pfaff U., Ewert M., Wiatr R. Comparative single‐dose kinetics of amitriptyline and its N‐oxide in a volunteer. Arzneim.‐Forsch. 1978; 28(10b)1916–1920
  • Breyer‐Pfaff U., Prox A., Wachsmuth H., Yao P. Phenolic metabolites of amitriptyline and nortriptyline in rat bile. Drug Metab. Dispos. 1987; 15(6)882–889
  • Breyer‐Pfaff U., Becher B., Nusser E., Nill K., Baier‐Weber B., Zaunbrecher D., Wachsmuth H., Prox A. Quaternary N‐glucuronides of 10‐hydroxylated amitriptyline metabolites in human urine. Xenobiotica 1990; 20(7)727–738
  • Breyer‐Pfaff U., Pfandl B., Nill K., Nusser E., Monney C., Jonzier‐Perey M., Baettig D., Baumann P. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin. Pharmacol. Ther. 1992; 52(4)350–358
  • Breyer‐Pfaff U., Fischer D., Winne D. Biphasic kinetics of quaternary ammonium glucuronide formation from amitriptyline and diphenhydramine in human liver microsomes. Drug Metab. Dispos. 1997; 25(3)340–345
  • Breyer‐Pfaff U., Mey U., Green M. D., Tephly T. R. Comparative N‐glucuronidation kinetics of ketotifen and amitriptyline by expressed human UDP‐glucuronosyltransferases and liver microsomes. Drug Metab. Dispos. 2000; 28(8)869–872
  • Burch J. E. The demethylation of amitriptyline: a cross‐over study of steady‐state plasma levels of amitriptyline and nortriptyline in depressed patients. Psychopharmacology 1983; 80: 254–258, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Burch J. E., Hullin R. P. Amitriptyline pharmacokinetics. A crossover study with single doses of amitriptyline and nortriptyline. Psychopharmacology 1981; 74: 35–42, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Burch J. E., Herries D. G. The demethylation of amitriptyline administered by oral and intramuscular routes. Psychopharmacology 1983; 80: 249–253, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Burch J. E., Roberts S. G., Raddats M. A. Amitriptyline and its basic metabolites determined in plasma by gas chromatography. J. Chromatogr. 1984; 308: 165–179, [PUBMED], [INFOTRIEVE]
  • Cashman J. R., Park S. B., Berkman C. E., Cashman L. E. Role of hepatic flavin‐containing monooxygenase 3 in drug and chemical metabolism in adult humans. Chem.‐Biol. Interact. 1995; 96: 33–46, [CROSSREF]
  • Corona G. L., Maffei Facino R. Identification and evaluation of amitryptiline and its basic metabolites in rabbit urine. Biochem. Pharmacol. 1968; 17: 2045–2050, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dahl M. L., Nordin C., Bertilsson L. Enantioselective hydroxylation of nortriptyline in human liver microsomes, intestinal homogenate, and patients treated with nortriptyline. Ther. Drug Monit. 1991; 13(3)189–194, [PUBMED], [INFOTRIEVE]
  • Dahl M. L., Bertilsson L., Nordin C. Steady‐state plasma levels of nortriptyline and its 10‐hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology 1996; 123: 315–319, [PUBMED], [INFOTRIEVE]
  • Dahl‐Puustinen M. L., Åberg‐Wistedt A., Bertilsson L. Glucuronidation of amitriptyline in man in vivo. Pharmacol. Toxicol. 1989a; 65(1)37–39
  • Dahl‐Puustinen M. L., Perry T. L., Jr., Dumont E., von Bahr C., Nordin C., Bertilsson L. Stereoselective disposition of racemic E‐10‐hydroxynortriptyline in human beings. Clin. Pharmacol. Ther. 1989b; 45(6)650–656
  • Dahl‐Puustinen M. L., Dumont E., Bertilsson L. Glucuronidation of E‐10‐hydroxynortriptyline in human liver, kidney, and intestine. Organ‐specific differences in enantioselectivity. Drug Metab. Dispos. 1989c; 17(4)433–436
  • Dalén P., Dahl M. L., Bernal Ruiz M. L., Nordin J., Bertilsson L. 10‐Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3 and 13 functional CYP2D6 genes. Clin. Pharmacol. Ther. 1998; 63(4)444–452
  • Desta Z., Zhao X., Shin J. G., Flockhart D. A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 2002; 41(12)913–958, [PUBMED], [INFOTRIEVE]
  • Dumont E., von Bahr C., Perry T. L., Jr., Bertilsson L. Glucuronidation of the enantiomers of E‐10‐hydroxynortriptyline in human and rat liver microsomes. Pharmacol. Toxicol. 1987; 61: 335–341, [PUBMED], [INFOTRIEVE]
  • Eschenhof E., Rieder J. Untersuchungen über das Schicksal des Antidepressivums Amitriptylin im Organismus der Ratte und des Menschen. Arzneim.‐Forsch. 1969; 19(6)957–960
  • Garland W. A., Muccino R. R., Min B. H., Cupano J., Fann W. E. A method for the determination of amitriptyline and its metabolites nortriptyline, 10‐hydroxyamitriptyline, and 10‐hydroxynortriptyline in human plasma using stable isotope dilution and gas chromatography‐chemical ionization mass spectrometry (GC‐CIMS). Clin. Pharmacol. Ther. 1979; 25(6)844–856, [PUBMED], [INFOTRIEVE]
  • Green M. D., Tephly T. R. Glucuronidation of amine substrates by purified and expressed UDP‐glucuronosyltransferase proteins. Drug Metab. Dispos. 1998; 26(9)860–867, [PUBMED], [INFOTRIEVE]
  • Green M. D., King C. D., Mojarrabi B., Mackenzie P. I., Tephly T. R. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP‐glucuronosyltransferase 1A3. Drug Metab. Dispos. 1998; 26(6)507–512, [PUBMED], [INFOTRIEVE]
  • Hiemke C., Härtter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol. Ther. 2000; 85: 11–28, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hucker H. B. Metabolism of amitriptyline. Pharmacologist 1962; 4: 171
  • Hucker H. B., Balletto A. J., Demetriades J., Arison B. H., Zacchei A. G. Urinary metabolites of amitriptyline in the dog. Drug Metab. Dispos. 1977; 5(2)132–142, [PUBMED], [INFOTRIEVE]
  • Hutt V., Theodor R., Pabst G., Dilger C., Mosberg H., Fischer W., Jaeger H. Plasma‐ und Urinkinetik von Amitriptylinoxid und seiner Metaboliten. Vergleich einer intravenösen Infusion mit einer oralen Einmalgabe bei Probanden. Arzneim.‐Forsch. 1991; 41(4)367–372
  • Hyttel J., Christensen A. V., Fjalland B. Neuropharmacological properties of amitriptyline, nortriptyline and their metabolites. Acta Pharmacol. Toxicol. 1980; 47: 53–57
  • Jerling M., Alván G. Nonlinear kinetics of nortriptyline in relation to nortriptyline clearance as observed during therapeutic drug monitoring. Eur. J. Clin. Pharmacol. 1994; 46: 67–70, [PUBMED], [INFOTRIEVE]
  • Jerling M., Bertilsson L., Sjöqvist F. The use of therapeutic drug monitoring data to document kinetic drug interactions: an example with amitriptyline and nortriptyline. Ther. Drug Monit. 1994; 16: 1–12, [PUBMED], [INFOTRIEVE]
  • Jiang Z. P., Shu Y., Chen X. P., Huang S. L., Zhu R. H., Wang W., He N., Zhou H. H. The role of CYP2C19 in amitriptyline N‐demethylation in Chinese subjects. Eur. J. Clin. Pharmacol. 2002; 58(2)109–113, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Johne A., Schmider J., Brockmöller J., Stadelmann A. M., Störmer E., Bauer S., Scholler G., Langheinrich M., Roots I. Decreased plasma levels of amitriptyline and its metabolites on comedication with an extract from St. John's Wort (hypericum perforatum). J. Clin. Psychopharmacol. 2002; 22(1)46–54, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kirchheiner J., Brøsen K., Dahl M. L., Gram L. F., Kasper S., Roots I., Sjöqvist F., Spina E., Brockmöller J. CYP2D6 and CYP2C19 genotype‐based dose recommendations for antidepressants: a first step towards subpopulation‐specific dosages. Acta Psychiatr. Scand. 2001; 104: 173–192, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kitamura S., Sugihara K., Tatsumi K. A unique tertiary amine N‐oxide reduction system composed of quinone reductase and heme in rat liver. Drug Metab. Dispos. 1999; 27(1)92–97, [PUBMED], [INFOTRIEVE]
  • Kitamura S., Ohashi K. N. K., Sugihara K., Ohta S. Extremely high drug‐reductase activity based on aldehyde oxidase in monkey liver. Biol. Pharm. Bull. 2001; 24(7)856–859, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kuhn R. Über die Behandlung depressiver Zustände mit einem Iminodibenzylderivat (G22355). Schweiz. Med. Wochenschr. 1957; 87: 1135–1140, [PUBMED], [INFOTRIEVE]
  • Lehman J. P., Fenselau C., DePaulo J. R. Quaternary ammonium‐linked glucuronides of amitriptyline, imipramine, and chlorpromazine. Drug Metab. Dispos. 1983; 11: 221–225, [PUBMED], [INFOTRIEVE]
  • Leucht S., Hackl H. J., Steimer W., Angersbach D., Zimmer R. Effect of adjunctive paroxetine on serum levels and side‐effects of tricyclic antidepressants in depressive inpatients. Psychopharmacology 2000; 147: 378–383, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Leuschner F., Neumann W., Doppelfeld I. S., Erdös A., Fontaine R., Gabbar H. A., Graf E. General pharmacology of amitriptylinoxide. Arzneim.‐Forsch. 1978; 28(10b)1883–1893
  • Madsen H., Kramer Nielsen K., Brøsen K. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms—a population study. Br. J. Clin. Pharmacol. 1995; 39: 433–439, [PUBMED], [INFOTRIEVE]
  • Maffei Facino R., Santagostino G., Corona G. L. Presence of an acid metabolite of amitryptiline in rabbit urine. Biochem. Pharmacol. 1970; 19: 1503–1505, [CROSSREF]
  • McMahon R. E., Marshall F. J., Culp H. W., Miller W. M. The metabolism of nortriptyline‐N‐methyl‐14C in rats. Biochem. Pharmacol. 1963; 12(10)1207–1217, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mellström B., von Bahr C. Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10‐hydroxyamitriptyline in human liver microsomes. Drug Metab. Dispos. 1981; 9(6)565–568
  • Mellström B., Bertilsson L., Säwe J., Schulz H. U., Sjöqvist F. E‐ and Z‐10‐hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin. Pharmacol. Ther. 1981; 30: 189–193
  • Mellström B., Alván G., Bertilsson L., Potter W. Z., Säwe J., Sjöqvist F. Nortriptyline formation after single oral and intramuscular doses of amitriptyline. Clin. Pharmacol. Ther. 1982; 32: 664–667
  • Mellström B., Bertilsson L., Birgersson C., Göransson M., von Bahr C. E‐ and Z‐10‐hydroxylation of nortriptyline by human liver microsomes—methods and characterization. Drug Metab. Dispos. 1983; 11(2)115–119
  • Mellström B., Säwe J., Bertilsson L., Sjöqvist F. Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers. Clin. Pharmacol. Ther. 1986; 39: 369–371
  • Mey U., Wachsmuth H., Breyer‐Pfaff U. Conjugation of the enantiomers of ketotifen to four isomeric quaternary ammonium glucuronides in humans in vivo and in liver microsomes. Drug Metab. Dispos. 1999; 27(11)1281–1292, [PUBMED], [INFOTRIEVE]
  • Midgley I., Hawkins D. R., Chasseaud L. F. The metabolic fate of the antidepressive agent amitriptylinoxide in man. Arzneim.‐Forsch. 1978; 28(10b)1911–1916
  • Nakajima M., Tanaka E., Kobayashi T., Ohashi N., Kume T., Yokoi T. Imipramine N‐glucuronidation in human liver microsomes: biphasic kinetics and characterization of UDP‐glucuronosyltransferase isoforms. Drug Metab. Dispos. 2002; 30(6)636–642, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Nordin C., Bertilsson L. Active hydroxymetabolites of antidepressants. Emphasis on E‐10‐hydroxy‐nortriptyline. Clin. Pharmacokinet. 1995; 28(1)26–40, [PUBMED], [INFOTRIEVE]
  • Nordin C., Bertilsson L., Otani K., Widmark A. Little anticholinergic effect of E‐10‐hydroxynortriptyline compared with nortriptyline in healthy subjects. Clin. Pharmacol. Ther. 1987; 41: 97–102, [PUBMED], [INFOTRIEVE]
  • Nusser E., Nill K., Breyer‐Pfaff U. Enantioselective formation and disposition of (E)‐ and (Z)‐10‐hydroxynortriptyline. Drug Metab. Dispos. 1988; 16(3)509–511, [PUBMED], [INFOTRIEVE]
  • Nusser E., Nill K., Breyer‐Pfaff U. Enantiomer analysis of E‐ and Z‐10‐hydroxyamitriptyline in human urine. J. Chromatogr. 1990; 528: 163–171, [PUBMED], [INFOTRIEVE]
  • Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase, and aldehyde reductase of human liver. Biochem. Pharmacol. 1995; 50: 221–227, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Olesen O. V., Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA‐expressed human cytochrome P‐450 isozymes. Drug Metab. Dispos. 1997; 25(6)740–744, [PUBMED], [INFOTRIEVE]
  • Perry P. J., Zeilmann C., Arndt S. Tricyclic antidepressant concentrations in plasma: an estimate of their sensitivity and specificity as a predictor of response. J. Clin. Psychopharmacol. 1994; 14: 230–240, [PUBMED], [INFOTRIEVE]
  • Pfandl B., Mörike K., Winne D., Schareck W., Breyer‐Pfaff U. Stereoselective inhibition of nortriptyline hydroxylation in man by quinidine. Xenobiotica 1992; 22(6)721–730, [PUBMED], [INFOTRIEVE]
  • Pollock B. G., Everett G., Perel J. M. Comparative cardiotoxicity of nortriptyline and its isomeric 10‐hydroxymetabolites. Neuropsychopharmacology 1992; 6(1)1–10, [PUBMED], [INFOTRIEVE]
  • Potter W. Z., Calil H. M., Manian A. A., Zavadil A. P., Goodwin F. K. Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity. Biol. Psychiatry 1979; 14(4)601–613, [PUBMED], [INFOTRIEVE]
  • Powis G., DeGraw C. L. N‐oxide reduction by hemoglobin, cytochrome C and ferrous ions. Res. Commun. Chem. Pathol. Pharmacol. 1980; 30(1)143–150, [PUBMED], [INFOTRIEVE]
  • Preskorn S. H., Jerkovich G. S. Central nervous system toxicity of tricyclic antidepressants: phenomenology, course, risk factors, and role of therapeutic drug monitoring. J. Clin. Psychopharmacol. 1990; 10(2)88–95, [PUBMED], [INFOTRIEVE]
  • Prox A., Breyer‐Pfaff U. Amitriptyline metabolites in human urine. Identification of phenols, dihydrodiols, glycols, and ketones. Drug Metab. Dispos. 1987; 15(6)890–896, [PUBMED], [INFOTRIEVE]
  • Rollins D. E., Alván G., Bertilsson L., Gillette J. R., Mellström B., Sjöqvist F., Träskman L. Interindividual differences in amitriptyline demethylation. Clin. Pharmacol. Ther. 1980; 28(1)121–129, [PUBMED], [INFOTRIEVE]
  • Santagostino G., Maffei Facino R., Pirillo D. Urinary excretion of amitriptyline N‐oxide in humans. J. Pharm. Sci. 1973; 63(11)1690–1692
  • Shimoda K., Someya T., Yokono A., Morita S., Hirokane G., Takahashi S., Okawa M. Impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J. Clin. Psychopharmacol. 2002; 22(4)371–378, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Takekawa K., Kitamura S., Sugihara K., Ohta S. Non‐enzymatic reduction of aliphatic tertiary amine N‐oxides mediated by the haem moiety of cytochrome P450. Xenobiotica 2001; 31(1)11–23, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ulrich S., Läuter J. Comprehensive survey of the relationship between serum concentration and therapeutic effect of amitriptyline in depression. Clin. Pharmacokinet. 2002; 41(11)853–876, [PUBMED], [INFOTRIEVE]
  • Vandel B., Vandel S., Allers G., Bechtel P., Volmat R. Interaction between amitriptyline and phenothiazine in man: effect on plasma concentration of amitriptyline and its metabolite nortriptyline and the correlation with clinical response. Psychopharmacology 1979; 65: 187–190, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Vandel B., Sandoz M., Vandel S., Allers G., Volmat R. Biotransformation of amitriptyline in depressive patients: urinary excretion of seven metabolites. Eur. J. Clin. Pharmacol. 1982; 22: 239–245, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Vandel S., Bertschy G., Vandel B., Allers G., Volmat R. Amitriptyline: linear or nonlinear kinetics in every day practice?. Eur. J. Clin. Pharmacol. 1989; 37: 595–598, [PUBMED], [INFOTRIEVE]
  • Vandel S., Bertschy G., Baumann P., Bouquet S., Bonin B., Francois T., Sechter D., Bizouard T. Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine and neuroleptics in phenotyped patients. Pharmacol. Res. 1995; 31: 347–353, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Venkatakrishnan K., von Moltke L. L., Greenblatt D. J. Nortriptyline E‐10‐hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme‐inducing drugs. J. Clin. Pharmacol. 1999; 39: 567–577, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Venkatakrishnan K., von Moltke L. L., Greenblatt D. J. Application of the relative activity factor approach in scaling from heterologously expressed cytochromes P450 to human liver microsomes: studies on amitriptyline as a model substrate. J. Pharmacol. Exp. Ther. 2001; 297(1)326–337, [PUBMED], [INFOTRIEVE]
  • von Bahr C., Steiner E., Koike Y., Gabrielsson J. Time course of enzyme induction in humans: effect of pentobarbital on nortriptyline metabolism. Clin. Pharmacol. Ther. 1998; 64(1)18–26, [PUBMED], [INFOTRIEVE]
  • Yamada H., Shimizudani T., Hatsumura M., Oguri K., Yoshimura H. Metabolic formation of dimethylamine and methylamine from basic drugs containing N‐methyl group: a newly established chromatographic assay and its application to the determination of deaminase activity. Biol. Pharm. Bull. 1993; 16(9)847–851, [PUBMED], [INFOTRIEVE]
  • Ziegler D. M. Microsomal flavin‐containing monooxygenase: oxygenation of nucleophilic nitrogen and sulfur compounds. Enzymatic Basis of Detoxication, W. B. Jakoby. Biochemical Pharmacology and Toxicology, Academic Press, New York 1980; Vol. I: 201–227
  • Ziegler D. M. Molecular basis for N‐oxygenation of sec‐ and tert‐amines. Biological Oxidation of Nitrogen in Organic Molecules. Chemistry, Toxicology and Pharmacology, J. W. Gorrod, L. A. Damani. Ellis Horwood Health Science Series, Horwood, Chichester 1985; 43–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.