74
Views
8
CrossRef citations to date
0
Altmetric
Original

DIFFERENTIAL REGULATION OF SF-1-COFACTOR INTERACTIONS

, , , , , & show all
Pages 505-513 | Published online: 07 Jul 2009

REFERENCES

  • Hammer G. D., Krylova I., Zhang Y., Darimont B. D., Simpson K., Weigel N. L., Ingraham H. A. Phosphorylation of the Nuclear Receptor SF-1 Modulates Cofactor Recruitment: Integration of Hormone Signaling in Reproduction and Stress. Mol. Cell. 1999; 3: 521–526
  • Lund J., Bakke M., Mellgren G., Morohashi K., Doskeland S. O. Transcriptional Regulation of the Bovine CYP17 Gene by cAMP. Steroids 1997; 62: 43–45
  • Æsøy R., Mellgren G., Morohashi K., Lund J. Activation of cAMP-Dependent Protein Kinase Increases the Protein Level of Steroidogenic Factor-1. Endocrinology 2002; 143: 295–303
  • Bakke M., Lund J. Mutually Exclusive Interactions of Two Nuclear Orphan Receptors Determine Activity of a Cyclic Adenosine 3′5′-Monophosphate-Responsive Sequence in the Bovine CYP17 Gene. Mol. Endocrinol. 1995; 9: 327–339
  • Børud B., Hoang T., Bakke M., Jacob A. L., Lund J., Mellgren G. The Nuclear Receptor Coactivators p300/CBP/Cointegrator-Associated Protein (p/CIP) and Transcription Intermediary Factor 2 (TIF2) Differentially Regulate PKA-Stimulated Transcriptional Activity of Steroidogenic Factor 1. Mol. Endocrinol. 2002; 16: 757–773
  • Jacob A. L., Lund J. Mutations in the Activation Function-2 Core Domain of Steroidogenic Factor-1 Dominantly Suppresses PKA-Dependent Transactivation of the Bovine CYP17 Gene. J. Biol. Chem. 1998; 273: 13391–13394
  • Reinhart A. J., Williams S. C., Clark B. J., Stocco D. M. SF-1 (Steroidogenic Factor-1) and C/EBP Beta (CCAAT/Enhancer Binding Protein-Beta) Cooperate to Regulate the Murine StAR (Steroidogenic Acute Regulatory) Promoter. Mol. Endocrinol. 1999; 13: 729–741
  • Lopez D., Sandhoff T. W., McLean M. P. Steroidogenic Factor-1 Mediates Cyclic 3′5′-Adenosine Monophosphate Regulation of the High Density Lipoprotein Receptor. Endocrinology 1999; 140: 3034–3044
  • Torchia J., Rose D. W., Inostroza J., Kamei Y., Westin S., Glass C. K., Rosenfeld M. G. The Transcriptional Co-Activator p/CIP Binds CBP and Mediates Nuclear-Receptor Function [See Comments]. Nature 1997; 387: 677–684
  • Heery D. M., Kalkhoven E., Hoare S., Parker M. G. A Signature Motif in Trans-criptional Co-Activators Mediates Binding to Nuclear Receptors [See Comments]. Nature 1997; 387: 733–736
  • Hong H., Kohli K., Garabedian M. J., Stallcup M. R. GRIP1, a Transcriptional Coactivator for the AF-2 Transactivation Domain of Steroid, Thyroid, Retinoid, and Vitamin D Receptors. Mol. Cell. Biol. 1997; 17: 2735–2744
  • Voegel J. J., Heine M. J., Zechel C., Chambon P., Gronemeyer H. TIF2, a 160 kDa Transcriptional Mediator for the Ligand-Dependent Activation Function AF-2 of Nuclear Receptors. Embo. J. 1996; 15: 3667–3675
  • Crawford P. A., Polish J. A., Ganpule G., Sadovsky Y. The Activation Function-2 Hexamer of Steroidogenic Factor-1 Is Required, but not Sufficient for Potentiation by SRC-1. Mol. Endocrinol. 1997; 11: 1626–1635
  • Ito M., Yu R. N., Jameson J. L. Steroidogenic Factor-1 Contains a Carboxy-Terminal Transcriptional Activation Domain That Interacts with Steroid Receptor Coactivator-1. Mol. Endocrinol. 1998; 12: 290–301
  • Song C., Liao S. Cholestenoic Acid Is a Naturally Occurring Ligand for Liver X Receptor Alpha. Endocrinology 2000; 141: 4180–4184
  • Leers J., Treuter E., Gustafsson J. A. Mechanistic Principles in NR Box-Dependent Interaction Between Nuclear Hormone Receptors and the Coactivator TIF2. Mol. Cell. Biol. 1998; 18: 6001–6013
  • Kodera Y., Takeyama K., Murayama A., Suzawa M., Masuhiro Y., Kato S. Ligand Type-Specific Interactions of Peroxisome Proliferator-Activated Receptor Gamma with Transcriptional Coactivators. J. Biol. Chem. 2000; 275: 33201–3204
  • Koh S. S., Chen D., Lee Y. H., Stallcup M. R. Synergistic Enhancement of Nuclear Receptor Function by p160 Coactivators and Two Coactivators with Protein Methyltransferase Activities. J. Biol. Chem. 2001; 276: 1089–1098
  • Liu Z., Simpson E. R. Steroidogenic Factor 1 (SF-1) and SP1 are Required for Regulation of Bovine CYP11A Gene Expression in Bovine Luteal Cells and Adrenal Y1 Cells. Mol. Endocrinol. 1997; 11: 127–137
  • Ahlgren R., Suske G., Waterman M. R., Lund J. Role of Sp1 in cAMP-Dependent Transcriptional Regulation of the Bovine CYP11A Gene. J. Biol. Chem. 1999; 274: 19422–19428
  • Sugawara T., Saito M., Fujimoto S. Sp1 and SF-1 Interact and Cooperate in the Regulation of Human Steroidogenic Acute Regulatory Protein Gene Expression. Endocrinology 2000; 141: 2895–2903
  • Lee S. L., Sadovsky Y., Swirnoff A. H., Polish J. A., Goda P., Gavrilina G., Milbrandt J. Luteinizing Hormone Deficiency and Female Infertility in Mice Lacking the Transcription Factor NGFI-A (Egr-1). Science 1996; 273: 1219–1221
  • Nachtigal M. W., Hirokawa Y., Enyeart-VanHouten D. L., Flanagan J. N., Hammer G. D., Ingraham H. A. Wilms' Tumor 1 and Dax-1 Modulate the Orphan Nuclear Receptor SF-1 in Sex-Specific Gene Expression. Cell 1998; 93: 445–454
  • Barettino D., Vivanco Ruiz M. M., Stunnenberg H. G. Characterization of the Ligand-Dependent Transactivation Domain of Thyroid Hormone Receptor. Embo. J. 1994; 13: 3039–3049
  • Liu Y., Takeshita A., Misiti S., Chin W. W., Yen P. M. Lack of Coactivator Interaction Can Be a Mechanism for Dominant Negative Activity by Mutant Thyroid Hormone Receptors. Endocrinology 1998; 139: 4197–4204
  • Slagsvold T., Kraus I., Bentzen T., Palvimo J., Saatcioglu F. Mutational Analysis of the Androgen Receptor AF-2 (Activation Function 2) Core Domain Reveals Functional and Mechanistic Differences of Conserved Residues Compared with Other Nuclear Receptors [In Process Citation]. Mol. Endocrinol. 2000; 14: 1603–1617
  • Xu J., Qiu Y., DeMayo F. J., Tsai S. Y., Tsai M. J., O'Malley B. W. Partial Hormone Resistance in Mice with Disruption of the Steroid Receptor Coactivator-1 (SRC-1) Gene. Science 1998; 279: 1922–1925
  • Xu J., Liao L., Ning G., Yoshida-Komiya H., Deng C., O'Malley B. W. The Steroid Receptor Coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) Is Required for Normal Growth, Puberty, Female Reproductive Function, and Mammary Gland Development. Proc. Natl. Acad. Sci. USA 2000; 97: 6379–6384
  • Rowan B. G., Garrison N., Weigel N. L., O'Malley B. W. 8-Bromo-Cyclic AMP Induces Phosphorylation of Two Sites in SRC-1 That Facilitate Ligand-Independent Activation of the Chicken Progesterone Receptor and Are Critical for Functional Cooperation Between SRC-1 and CREB Binding Protein. Mol. Cell. Biol. 2000; 20: 8720–8730
  • Font de Mora J., Brown M. AIB1 Is a Conduit for Kinase-Mediated Growth Factor Signaling to the Estrogen Receptor. Mol. Cell. Biol. 2000; 20: 5041–5047
  • Lopez G. N., Turck C. W., Schaufele F., Stallcup M. R., Kushner P. J. Growth Factors Signal to Steroid Receptors Through Mitogen-Activated Protein Kinase Regulation of p160 Coactivator Activity. J. Biol. Chem. 2001; 276: 22177–22182
  • Nakajima S., Yamagata M., Sakai N., Ozono K. Effect of Cyclic Adenosine 3′5′-Monophosphate and Protein Kinase A on Ligand-Dependent Transactivation via the Vitamin D Receptor. Mol. Cell. Endocrinol. 2000; 159: 45–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.