Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 25, 2001 - Issue 2
69
Views
9
CrossRef citations to date
0
Altmetric
Original

MODULATION OF FETAL HEMOGLOBIN IN SICKLE CELL ANEMIA

Pages 195-211 | Received 09 Jun 2000, Accepted 09 Jun 2000, Published online: 07 Jul 2009

REFERENCES

  • Watson J., Stahman A. W., Bilello F. P. Significance of paucity of sickle cells in newborn negro infants. Am. J. Med. Sci. 1948; 215: 419–423
  • Kinney T. R., Ware R. E. Compound heterozygous states. Sickle Cell Disease: Basic Principles and Clinical Practice, S. H. Embury, R. P. Hebbel, N. Mohandas, M. H. Steinberg. Raven Press, New York, NYUSA 1994; 437–451
  • Poillon W. N., Kim B. C., Rodgers G. P., Noguchi C. T., Schechter A. N. Sparing effect of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin s at physiologic ligand saturations. Proc. Natl. Acad. Sci. USA 1993; 90: 5039–5043
  • Platt O. S., Brambilla D. J., Rosse W. F., Milner P. F., Castro O., Steinberg M. H., Klug P. P. Mortality in sickle cell disease: life expectancy and risk factors for early death. N. Engl. J. Med. 1994; 330: 1639–1644
  • Grosveld F., Antoniou M., Berry M., De Boer E., Dillon N., Ellis J., Fraser P., Hurst J., Imam A., Meijer D., Philipsen S., Pruzina S., Strouboulis J., Whyatt D. Regulation of human globin gene switching. Cold Spring Harbor Symp. Quant. Biol. 1993; 58: 7–13
  • Weiss M. J., Orkin S. H. GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 1995; 23: 99–107
  • Grosveld F., Antoniou M., Berry M., De Boer E., Dillon N., Ellis J., Fraser P., Hanscombe O., Hurst J., Imam A., Lindenbaum M., Philipsen S., Pruzina S., Strouboulis J., Raguz-Bolognesi S., Talbot D. The regulation of human globin gene switching. Philos. Trans. R. Soc. Lond. (Biol.) 1993; 339: 183–191
  • Wijgerde M., Grosveld F., Fraser P. Transcription complex stability and chromatin dynamics in vivo. Nature 1995; 377: 209–213
  • Epner E., Reik A., Cimbora D., Telling A., Bender M. A., Fiering S., Enver T., Martin D. I., Kennedy M., Keller G., Groudine M. The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-Ggobin locus. Mol. Cell. Biol. 1999; 2: 447–455
  • Bender M. A., Bulger M., Close J. Groudine, locus in mice do not require the locus control region. Mol. Cell. 2000; 5: 387–393
  • Peterson K. R., Clegg C. H., Huxley C., Josephson B. M., Haugen H. S., Furukawa T., Stamatoyannopoulos G. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human-globin locus display proper developmental control of human globin genes. Proc. Natl. Acad. Sci. USA 1993; 90: 7593–7597
  • Crossley M., Orkin S. H. Regulation of the β-globin locus. Curr. Opin. Genet. Dev. 1993; 3: 232–237
  • Shivdasani R. A., Orkin S. H. The transcriptional control of hematopoiesis. Blood 1996; 87: 4025–4039
  • Guy L. G., Mei Q., Perkins A. C., Orkin S. H., Wall L. Erythroid Krüppel-like factor is essential for β-globin gene expression even in absence of gene competition, but is not sufficient to induce the switch from γ-globin to β-globin gene expression. Blood 1998; 91: 2259–2263
  • Miller I. J., Bieker J. J. A novel erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol. Cell. Biol. 1993; 13: 2776–2786
  • Perkins A. C., Sharpe A. H., Orkin S. H. Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 1995; 375: 318–322
  • Asano H., Stamatoyannopoulos G. Activation of β-globin promoter by erythroid Krüppel-like factor. Mol. Cell. Biol. 1998; 18: 102–109
  • Asano H., Li X. S., Stamatoyannopoulos G. FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes [In Process Citation]. Blood 2000; 95: 3578–3584
  • DeSimone J., Heller P., Hall L., Zwiers D. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemia baboons. Proc. Natl. Acad. Sci. USA 1982; 79: 4428–4431
  • Felsenfeld G., McGhee J. Methylation and gene control. Nature 1982; 296: 602–603
  • Holliday R., Monk M., Pugh J. E. DNA Methylation and gene regulation. Phil. Trans. Roy. Soc. London. B: Biol. Sci. 1990; 326: 177–338
  • Bhattacharya S. K., Ramchandani S., Cervoni N., Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 1999; 397: 579–583
  • Christman J. K., Price P., Pedrinan L. Acs G. Acs. Correlation between hypomethylation of DNA and expression of globin genes in friend erythroleukemia cells. Eur. J. Biochem. 1977; 81: 53–61
  • McGhee J. D., Ginder G. D. Specific DNA methylation sites in the vicinity of the chicken ρ-globin genes. Nature 1979; 280: 419–420
  • van der Ploeg L. H., Flavell R. A. DNA Methylation in the human γδβ-globin locus in erythroid and nonerythroid tissues. Cell 1980; 19: 947–958
  • Singal R., Ferris R., Little J. A., Wang S. Z., Ginder G. D. Methylation of the minimal promoter of an embryonic globin gene silences transcription in primary erythroid cells. Proc. Natl. Acad. Sci. USA 1997; 94: 13724–13729
  • Davey C., Pennings S., Allan J. CpG Methylation remodels chromatin structure in vitro. J. Mol. Biol. 1997; 267: 276–288
  • Enver T., Zhang J-W., Papayannopoulou Th., Stamatoyannopoulos G. DNA methylation: a secondary event in globin gene switching?. Genes Dev. 1988; 2: 698–706
  • Garrick D., Sutherland H., Robertson G., Whitelaw E. Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status. Nucleic Acids Res. 1996; 24: 4902–4909
  • Jones P. A., Taylor S. M. Cellular Differentiation cytidine analogs and DNA methylation. Cell 1980; 20: 85–93
  • Mohandas T., Sparkes R. S., Shapiro L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 1998; 211: 393–396
  • Papayannopoulou Th., Brice M., Stamatoyannopoulos G. Stimulation of fetal hemoglobin synthesis in bone marrow cultures from adult individuals. Proc. Natl. Acad. Sci. USA 1976; 73: 2033–2037
  • Papayannopoulou Th., Brice M., Stamatoyannopoulos G. Hemoglobin F Synthesis in vitro: Evidence for control at the level of primitive erythroid stem cells. Proc. Natl. Acad. Sci. USA 1977; 74: 2923–2927
  • Alter B. P., Rappeport J. M., Huisman T. H.J., Schroeder W. A., Nathan D. G. Fetal erythropoiesis following bone marrow transplantation. Blood 1976; 48: 843–853
  • Swank R. A., Stamatoyannopoulos G. Fetal gene reactivation. Curr. Opin. Genet. Dev. 1998; 8: 366–370
  • Papayannopoulou Th., Kalmantis T., Stamatoyannopoulos G. Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin 208 STEINBERG synthesis and degree of maturity of human erythroid cells. Proc. Natl. Acad. Sci. USA 1979; 76: 6420–6424
  • Torrealba-de Ron A. T., Papayannopoulou Th., Knapp M. S., Fu M. F., Knitter G., Stamatoyannopoulos G. Perturbations in the erythroid marrow progenitor cell pools may play a role in the augmentation of Hb F by 5-azacytidine. Blood 1984; 63: 201–210
  • Letvin N. L., Linch D. C., Beardsley P., McIntyre K. W., Nathan D. G. Augmentation of fetal hemoglobin in anemic monkeys by hydroxyurea. N. Engl. J. Med. 1984; 310: 869–874
  • Veith R., Papayannopoulou Th., Kurachi S., Stamatoyannopoulos G. Treatment of baboon with vinblastine: insights into the mechanisms of pharmacologic stimulation of Hb F in the adult. blood 1985; 66: 456–459
  • Charache S., Terrin M. L., Moore R. D., Dover G. J., Barton F. B., Eckert S. V., McMahon R. P., Bonds D. R. Multicenter study of hydroxyurea in sickle cell anemia. effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N. Engl. J. Med. 1995; 332: 1317–1322
  • Glauber J. G., Wandersee N. J., Little J. A., Ginder G. D. 5′-Flanking sequences mediate butyrate stimulation of embryonic globin gene expression in adult erythroid cells. Mol. Cell. Biol. 1991; 11: 4690–4697
  • Pace B. S., Li Q. L., Stamatoyannopoulos G. In vivo search for butyrate responsive sequences using transgenic mice carrying Aγ gene promoter mutants. Blood 1996; 88: 1079–1083
  • Kruh J. Effects of sodium butyrate a new pharmacological agent on cells in culture. Mol. Cell. Biochem. 1982; 42: 65–82
  • McCaffrey P. G., Newsome D. A., Fibach E., Yoshida M., Su M. S. Induction of gamma-globin by histone deacetylase inhibitors. Blood 1997; 90: 2075–2083
  • Ginder G. D., Whitters M. J., Pohlman J. K. Activation of a chicken embryonic globin gene in adult erythroid cells by 5-azacytidine and sodium butyrate. Proc. Natl. Acad. Sci. USA 1984; 81: 3954–3958
  • Pace B., Li Q., Peterson K., Stamatoyannopoulos G. α-Amino butyric acid cannot reactivate the silenced γ gene of the β locus YAC transgenic mouse. Blood 1994; 84: 4344–4353
  • Ikuta T., Kan Y. W., Swerdlow P. S., Faller D. V., Perrine S. P. Alterations in protein- DNA interactions in the γ-globin gene promoter in response to butyrate therapy. Blood 1998; 92: 2924–2933
  • Atweh G. F., Sutton M., Nassif I., Boosalis V., Dover G. J., McMahon L., Stamatoyannopoulos G., Faller D. V., Perrine S. P. Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. Blood 1999; 93: 1790–1797
  • Pagnier J., Mears J. G., Dunda-Belhodja O., Schaefer-Rego K. E., Beldjord C., Nagel R. L., Labie D. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc. Natl. Acad. Sci. USA 1984; 81: 1771–1773
  • Nagel R. L., Fabry M. E., Pagnier J., Zohoun I., Wajcman H., Baudin V., Labie D. Hematologically and genetically distinct forms of sickle cell anemia in Africa: the senegal type and the benin type. N. Engl. J. Med. 1984; 312: 880–884
  • Lapoumeroulie C., Dunda O., Ducrocq R., Trabuchet G., Mony-Lobe M., Bodo J. M., Carnevale P., Labie D., Elion J., Krishnamoorthy R. A novel sickle gene of yet another origin in Africa: the Cameroon type. Hum. Genet. 1989; 89: 333–337
  • Gilman J. G., Huisman T. H.J. DNA Sequence variation associated with elevated fetal Gγ globin production. Blood 1985; 66: 783–787
  • Miller B. A., Olivieri N., Salameh M., Ahmed M., Antognetti G., Huisman T. H.J., Nathan D. G., Orkin S. H. Molecular analysis of the high-hemoglobin-F phenotype in Saudi Arabian sickle cell anemia. N. Engl. J. Med. 1987; 316: 244–250
  • Lanclos K. D., Öner C., Dimovski A. J., Gu Y.-C., Huisman T. H.J. Sequence variations in the 5′ flanking and IVS-II regions of the Gγ- and Aγ-globin genes of βS chromosomes with five different haplotypes. Blood 1991; 77: 2488–2496
  • Dimovski A. J., Öner C., Agarwal S., Gu Y-C., Gu L-H., Kutlar F., Lanclos K. D., Huisman T. H.J. Certain mutations observed in the 5′ sequences of the Gγ- and Aγ- globin genes of βS chromosomes are specific for chromosomes with major haplotypes. Acta Haematol. 1991; 85: 79–87
  • Öner C., Dimovski A. J., Altay Ç., Altay, Gürgey A., Gu Y. C., Huisman T. H.J., Lanclos K. D. Sequence variations in the 5′ hypersensitive site-2 of the locus control region of βS chromosomes are associated with different levels of fetal globin in hemoglobin S homozygotes. Blood 1992; 79: 813–819
  • Lu Z. H., Steinberg M. H. Fetal hemoglobin in sickle cell anemia: relation to regulatory sequences cis to the β-globin gene. Blood 1996; 87: 1604–1611
  • Pissard S., Beuzard Y. A potential regulatory region for the expression of fetal hemoglobin in sickle cell disease. Blood 1994; 84: 331–338
  • Blau C. A., Stamatoyannopoulos G. Regulation of fetal hemoglobin. Sickle Cell Disease: Basic Principles and Clinical Practice, S. H. Embury, R. P. Hebbel, N. Mohandas, M. H. Steinberg. Raven Press, New York, NYUSA 1994; 247–266
  • Plonczynski M., Figueiredo M. S., Steinberg M. H. Fetal hemoglobin in sickle cell anemia: examination of phylogenetically conserved sequences within the locus control region but outside the cores of hypersensitive sites 2 and 3. Blood Cells Mol. Dis. 1997; 23: 188–200
  • Miyoshi K., Kaneto Y., Kawai H., Ohchi H., Niki S., Hasegawa K., Shirakami A., Yamano T. X-linked dominant control of F-cells in normal adult life: characterization of the Swiss type as hereditary persistence of fetal hemoglobin regulated dominantly by Gene(s) on X chromosome. Blood 1988; 72: 1854–1860
  • Dover G. J., Smith K. D., Chang Y. C., Purvis S., Mays A., Meyers D. A., Sheils C., Serjeant G. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood 1992; 80: 816–824
  • Chang Y. C., Smith K. D., Serjeant G., Dover G. The X-linked F cell production locus: genetic mapping and role in fetal hemoglobin production. Clin. Res. 1994; 42: 237A
  • Steinberg M. H., Hsu H., Nagel R. L., Milner P. F., Adams J. G., Benjamin L., Fryd S., Gillette P., Gilman J., Josifovska O., Hellman-Erlingsson S., Safaya S., Huey L., Rieder R. F. Gender and haplotype effects upon hematological manifestations of adult sickle cell anemia. Am. J. Hematol. 1995; 48: 175–181
  • Zon L. I., Tsai S. F., Burgess S., Matsudaira P., Bruns G. A., Orkin S. H. The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome. Proc. Natl. Acad. Sci. USA 1990; 87: 668–672
  • Thein S. L., Sampietro M., Rohde K., Rochette J., Weatherall D. J., Lathrop G. M., Demenais F. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers. Am. J. Hum. Genet. 1994; 54: 214–228
  • Game L., Close J., Stephens P., Mitchell J., Best S., Rochette J., Louis-dit-Sully C., Riley J., See C. G., Sanseau P., Kearney L., Bethel G., Humphray S., Dunham I., Mungall A., Thein S. L. An integrated map of human 6q22.3-q24 including a 3-Mb high-resolution BAC/PAC contig encompassing a QTL for fetal hemoglobin. Genomics 2000; 64: 264–276
  • Garner C., Tatu T., Reittie J. E., Littlewood T., Darley J., Cervino S., Farrall M., Kelly P., Spector T. D., Thein S. L. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 2000; 95: 342–346
  • Plonczynski M., Hardy C. L., Safaya S., Harrell A., McCoy L., Brinson A., Agwarangbo L., Steinberg M. H. Induction of globin synthesis in K562 cells is associated with differential expression of transcription factor genes. Blood Cells Mol. Dis. 1999; 25: 156–165
  • Holmes M. L., Haley J. D., Cerruti L., Zhou W. L., Zogos H., Smith D. E., Cunningham J. M., Jane S. M. Identification of Id2 as a globin regulatory protein by representational difference analysis of K562 cells induced to express γ-globin with a fungal compound. Mol. Cell. Biol. 1999; 19: 4182–4190

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.