Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 33, 2004 - Issue 2
24
Views
2
CrossRef citations to date
0
Altmetric
Original

Regulation of Interleukin‐2 Induced Soluble Fas Ligand Release from Human Peripheral Blood Mononuclear Cells

, Priv.‐Doz. Dr. Med., &
Pages 251-260 | Published online: 26 Aug 2009

References

  • Bergmann‐Leitner E. S., Abrams S. I. Positive and negative consequences of soluble Fas ligand produced by an antigen‐specific CD4 + T cell response in human carcinoma immune interactions. Cell. Immunol. 2001; 209: 49–62, [CSA]
  • Bönig H., Banning U., Hannen M., Kim Y. M., Verheyen J., Mauz‐Körholz C., Körholz D. Transforming growth factor‐beta 1 suppresses interleukin‐15‐mediated interferon‐gamma production in human T lymphocytes. Scand. J. Immunol. 1999; 50: 612–618, [CROSSREF]
  • Brown S. B., Savill J. Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J. Immunol. 1999; 162: 480–485, [PUBMED], [INFOTRIEVE]
  • Dilloo D., Laws H. J., Hanenberg H., Körholz D., Nürnberger W., Burdach S. E. G. Induction of two distinct natural killer‐cell populations, activated T cells and antineoplastic cytokines, by interleukin‐2 therapy in children with solid tumors. Exp. Hematol. 1994; 22: 1081–1088, [PUBMED], [INFOTRIEVE], [CSA]
  • Eneslatt K., Rantapaa‐Dahlqvist S., Uddhammar A., Sundqvist K. G. The regulation of FasL expression—a distinguishing feature between monocytes and T lymphocytes/NK cells with possible implications for SLE. J. Clin. Immunol. 2001; 21: 183–192, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Friesen C., Herr I., Krammer P. H., Debatin K.‐M. Involvement of the CD95 (APO‐1/Fas) receptor/ligand system in drug‐induced apoptosis in leukemia cells. Nat. Med. 1996; 2: 574–577, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Fulda S., Los M., Friesen C., Debatin K.‐M. Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int. J. Cancer 1998; 76: 105–114, [PUBMED], [INFOTRIEVE]
  • Girard D., Gosselin J., Heitz C., Paquin R., Beaulieu A. D. Effects of interleukin‐2 on gene expression in human neutrophils. Blood 1995; 86: 1170–1176, [PUBMED], [INFOTRIEVE], [CSA]
  • Gollob J. A., Kawasaki H., Ritz J. Interferon‐gamma and interleukin‐4 regulate T cell interleukin‐12 responsiveness through the differential modulation of high‐affinity interleukin‐12 receptor expression. Eur. J. Immunol. 1997; 27: 647–652, [PUBMED], [INFOTRIEVE], [CSA]
  • Kayagaki N., Kawasaki A., Ebata T., Ohmoto H., Ikeda S., Inoue S., Yoshino K., Okumura K., Yagita H. Metalloproteinase‐mediated release of human Fas ligand. J. Exp. Med. 1995; 182: 1777–1783, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Körholz D., Banning U., Bönig H., Grewe M., Schneider M., Mauz‐Körholz C., Klein‐Vehne A., Krutmann J., Burdach S. The role of interleukin‐10 in interleukin‐15 mediated T‐cell activation. Blood 1997; 90: 4513–4520, [CSA]
  • Mauz‐Körholz C., Dietzsch S., Schippel P., Banning U., Körholz D. Molecular mechanisms of hyperthermia‐ and cisplatin‐induced cytotoxicity in T cell leukemia. Anticancer Res. 2003; 23: 2643–2648, [CSA]
  • Miller J. S., Tessmer‐Tuck J., Blake N., Lund J., Scott A., Blazar B. R., Orchard P. J. Endogenous IL‐2 productin by natural killer cells maintain cytotoxic and proliferative capacity following retroviral‐mediated gene transfer. Exp. Hematol. 1997; 25: 1140–1148, [PUBMED], [INFOTRIEVE], [CSA]
  • Müller M., Wilder S., Bannasch D., Israeli D., Lehlbach K., Li‐Weber M., Friedman S. L., Galle P. R., Stremmel W., Oren M., Krammer P. H. p53 Activates the CD95 (APO‐1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 1998; 188: 2033–2045, [CROSSREF]
  • Olencki T., Finke J., Tubbs R., Tuason L., Greene T., McLain D., Swanson S. J., Herzog P., Stanley J., Edinger M., Budd G. T., Bukowski R. M. Immunomodulatory effects of interleukin‐2 and interleukin‐4 in patients with malignancy. J. Immunother. Emphas. Immunol. 1996; 19: 69–80, [CSA]
  • Schaafsma M. R., Falkenburg J. H., Landegent J. E., Duinkerken N., Osanto S., Ralph P., Kaushansky K., Wagemaker G., Van Damme J., Willemze R. In vivo production of interleukin‐5, granulocyte‐macrophage‐colony‐stimulating factor, macrophages colony‐stimulating factor, and interleukin‐6 during intravenous administration of high‐dose interleukin‐2 in cancer patients. Blood 1991; 78: 1981–1987, [PUBMED], [INFOTRIEVE]
  • Schandene L., Alonso Vega C., Willems F., Gerard C., Delvaux A., Velu T., Devos R., de Boer M., Goldman M. B7/CD28‐dependent IL‐5 production by human resting T cells is inhibited by IL‐10. J. Immunol. 1994; 152: 4368–4374, [PUBMED], [INFOTRIEVE]
  • Schwartzberg L. S., Petak I., Stewart C., Turner P. K., Ashley J., Tilman D. M., Douglas L., Tan M., Billups C., Mihalik R., Weir A., Tauer K., Shope S., Houghton J. A. Modulation of the Fas signalling pathway by IFN‐γ in therapy of colon cancer: phase I trial and correlative studies of IFN‐γ, 5‐Fluorouracil, and leucovorin. Clin. Cancer Res. 2002; 8: 2488–2498, [PUBMED], [INFOTRIEVE], [CSA]
  • van Haelst Pisani C., Kovach J. S., Kita H., Leiferman K. M., Gleich G. J., Silver J. E., Dennin R., Abrams J. S. Administration of interleukin‐2 (IL‐2) results in increased plasma concentrations of IL‐5 and eosinophilia in patients with cancer. Blood 1991; 78: 1534–1538
  • Verheyen J., Bönig H., Kim Y. M., Banning U., Mauz‐Körholz C., Kramm C., Körholz D. Regulation of interleukin‐2 induced interleukin‐5 and interleukin‐13 production in human peripheral blood mononuclear cells. Scand. J. Immunol. 2000; 51: 45–53, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Verheyen J., Bönig H., Banning U., Shin D. I., Mauz‐Körholz C., Körholz D. Co‐operation of IL‐1 and IL‐2 on T‐cell activation in mononuclear cell cultures. Immunol. Invest. 2001; 30: 289–302, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.