69
Views
12
CrossRef citations to date
0
Altmetric
Original

EFFECTS OF ELECTRICALLY GENERATED SILVER IONS ON HUMAN CELLS AND WOUND HEALING

Pages 1-19 | Published online: 07 Jul 2009

REFERENCES

  • Crede C. S.F. Die Verhutung der Augenzundung der Neugeborenen. Arch. Gynakol 1881; 17: 50
  • Barrenco S. D., Spadaro J. A., Berger T. J., Becker R. O. In vitro effect of weak direct current on Staphylococcus aureus. Clin. Orthop. 1974; 100: 250–255
  • Spadaro J. S., Berger T. J., Barrenco S. E., Chapin S. E., Becker R. O. Antibacterial effects of silver electrodes with weak direct current. Antimicrob. Age. Chemother 1974; 6: 637–642
  • Berger T. J., Spadaro J. A., Chapin S. E., Becker R. O. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob. Age. Chemother. 1976; 9: 357–358
  • Berger T. J., Spadaro J. A., Bierman R., Chapin S. E., Becker R. O. Antifungal properties of electrically generated metallic ions. Antimicrob. Age. Chemother. 1976; 10: 856–860
  • Spadaro J. A., Becker R. O. Treatment of localized infections with electrochemically injected silver. Transactions of the 22nd Annual Meeting of the Orthopedic Research Society. 1976; 114
  • Becker R. O., Spadaro J. A., Marino A. M. Clinical experiences with low intensity direct current stimulation of bone growth. Clin. Orthop. 1977; 124: 75–83
  • Becker R. O., Spadaro J. A. Treatment of orthopedic infections with electrically generated silver ions. J. Bone Joint Surg. [A.M.] 1978; 60A: 871–881
  • Webster D. A., Spadaro J. A., Becker R. O., Kramer S. Silver anode treatment of chronic osteromyelitis. Clin. Orthop. 1981; 161: 105–114
  • Becker R. O. Electrical treatment of osteomyelitis. Surgery of the Musculoskeletal System, C. Mc. Evarts. Churchill Livingstone, New York 1983; 10: 197–208
  • Becker R. O. Silver ions in the treatment of local infections. J. Metal Based Drugs, in press
  • Papineau L. J., Alfageme A., Dalcourt J. P., Pilon L. Osteomyelite chronique: excision et greffe de spongieux à l'air libre après a plat extensives. Int. Orthop. 1979; 3: 165–176
  • Gustilo R. B. Management of infected fractures. Surgery of the Musculoskeletal System, C. Mc. Evarts. Churchill Livingstone, New York 1983; 10: 105–134
  • Becker R. O. The bioelectric factors in amphibian limb regeneration. J. Bone Joint Surg. [A.M.] 1961; 43A: 643–656
  • Lavine L. S., Grodzinsky A. J. Current concepts review: electrical stimulation of repair of bone. J. Bone Joint Surg. [A.M.] 1987; 69A: 626–630
  • Lee R. C., Canaday D. J., Doong H. A review of the biophysical basis for the clinical application of electric fields in soft-tissue repair. J. Burn Care Rehabil. 1993; 14: 319–335
  • Alvarez O. M., Mertz P. M., Smerbeck R. V., Eaglstein W. H. The healing of superficial skin wounds is stimulated by external electrical current. J. Invest. Dermatol. 1983; 81: 144–148
  • Chu C.-S., McManus A. T., Pruitt B. A., Mason A. D. Therapeutic effects of silver nylon dressings with weak direct current on Pseudomonas aeruginosa-infected burn wounds. J. Trauma 1988; 28: 1488–1492
  • Chu C.-S., McManus A. T., Mason A. D., Okerberg C. V., Pruitt B. A. Multiple graft harvestings from deep partial-thickness scald wounds healed under the influence of weak direct current. J. Trauma 1990; 30: 1044–1050
  • Chu C.-S., McManus A. T., Okerberg C. V., Mason A. D., Pruitt B. A. Weak direct current accelerates split-thickness graft on tangentially excised second-degree burns. J. Burn Care Rehabil. 1991; 12: 285–293
  • Chu C.-S., McManus A. T., Matylevich N. P., Mason A. D., Pruitt B. A. Enhanced survival of autoepidermal-alloepidermal composite grafts in allosensitized animals by use of silver-nylon dressings and direct current. J. Trauma 1995; 39: 273–278
  • Chu C.-S., Matylevich N. P., McManus A. T., Mason A. D., Pruitt B. A. Direct current reduces wound edema after full thickness burn injury in rats. J. Trauma 1996; 40: 738–742
  • Mauro A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 1961; 9: 393–398
  • Beresford J. N. Osteogenic stem cells and the stromal system of bone and marrow. Clin. Orthop. 1989; 240: 661–665
  • Young H. E., Ceballos E. M., Smith J. C., Mancini M. L., Wright R. P., Reagan B. L., Bushnell I., Lucas P. A. Pluripotent mesenchymal stem cells reside within avian connective matrices. In Vivo Cell Dev. Biol. Anim. 1993; 29A: 723–736
  • Young H. E., Wright R. P., Mancini M. L., Lucas P. A., Reagan C. R., Black A. C. Bioactive factors affect proliferation and phenotypic expression in progenitor and pluripotent stem cells. Wound Rep. Regeneration 1998; 6: 65–75
  • Berardi A. C., Wang A., Levine J. D., Lopez P., Scadden D. T. Functional isolation and characterization of human hematopoietic stem cells. Science 1995; 267: 104–107
  • Thomson J. A., Iskovitz-Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marsall V. S., Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147
  • Becker R. O., Chapin S., Sherry R. Regeneration of the ventricular myocardium in amphibians. Nature 1974; 248: 145–147
  • Smith S. D. Induction of partial limb regeneration in Rana pipiens by galvanic stimulation. Anat Rec. 1967; 158: 89–97
  • Smith S. D. Effects of electrode placement on stimulation of adult frog limb regeneration. Ann. N.Y. Acad. Sci. 1974; 238: 500
  • Becker R. O., Murray D. G. A method for producing cellular dedifferentiation by means of very small electrical currents. Trans. NY Acad. Sci. 1967; 29: 606–615
  • Harrington D. B., Becker R. O. Electrical stimulation of RNA and protein synthesis in frog erythrocytes. Exp. Cell Res. 1073; 76: 95–98
  • Becker R. O., Murray D. G. Electrical control system regulating fracture healing in amphibians. Clin. Orthop. 1970; 73: 169–198
  • Becker R. O. Stimulation of partial limb regeneration in rats. Nature 1972; 235: 109–111
  • Becker R. O., Spadaro J. A. Electrical stimulation of partial limb regeneration in mammals. Bull. NY Acad. Med. 1972; 48: 627–641
  • Illingworth C. M. Trapped fingers and amputated finger tips in children. J. Pediatr. Surg. 1974; 9: 853–859
  • Illingworth C. M., Barker A. T. Measurement of electrical currents emerging during the regeneration of amputated finger tips in children. Clin Phys. Physiol. Measure. 1980; 1: 87–89
  • Angrist R. C., Gonnering R. S., Dortzbach R. K., Crawford K. Bioelectric conductivity potentials in experimental skin grafts. Opthalmol. Plast. Reconstruct. Surg. 1987; 3: 131–134
  • Peacock E. E. Reflections on wound healing and regeneration. Wound Rep. Regeneration 1995; 3: 3–5
  • Gross J. Getting to mammalian wound repair and amphibian limb regeneration: a mechanistic link in the early events. Wound Rep. Regeneration 1996; 4: 190–202
  • Stocum D. L. Regenerative biology and engineering: strategies for tissue restoration. Wound Rep. Regeneration 1998; 6: 276–290
  • Stocum D. L. Tissue restoration: approaches and prospects. Wound Rep. Regeneration 1996; 4: 3–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.