62
Views
5
CrossRef citations to date
0
Altmetric
Original

NONLINEAR PROCESSES OF INTRACELLULAR CALCIUM SIGNALING AS A TARGET FOR THE INFLUENCE OF EXTREMELY LOW-FREQUENCY FIELDS

&
Pages 21-42 | Published online: 07 Jul 2009

REFERENCES

  • Devyatkov N. D., Golant M. B., Betskii O. V. Millimeter Waves and Their Role in Vital Activity. Radio i Svyas, Moscow 1991, in Russian
  • Adey W. R. Biological effects of electromagnetic fields. J. Cell. Biochem. 1993; 51: 410–416
  • Grundler W., Kaiser F., Keilmann F., Walleczek J. Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 1992; 79: 551–559
  • Eichwald C., Walleczek J. Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys. J. 1996; 71: 623–631
  • Liboff A. R. Cyclotron resonance in membrane transport. Interactions Between Electromagnetic Fields and Cells, A. Chiabrera, C. Nikolini, H. P. Schwan. Plenum, New York 1985; 281–296
  • Lednev V. V. Bioeffects of weak combined, static and alternating magnetic fields. Biofizika 1996; 41: 224–232, (in Russian)
  • Binhi V. N. Interference mechanism for some biological effects of pulsed magnetic fields. Bioelectrochem. Bioenerg. 1998; 45: 73–81
  • Zhadin M. N. Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects. Bioelectromagnetics 1998; 19: 279–292
  • Wiesenfeld K., Moss F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 1995; 373: 33–36
  • Kaiser F., Wagner C. Stochastic resonance as a possible amplification mechanism of weak external signals in cellular systems. URSI-Kleinheubacher Berichte. 1996; 39: 653–664
  • Goldbeter A. Cell to Cell Signalling: From Experiments to Theoretical Models. Academic Press, London 1989
  • Berridge M. J., Galione A. Cytosolic calcium oscillators. FASEB J. 1988; 2: 3074–3082
  • Berridge M. J. Calcium oscillations. J. Biol. Chem. 1990; 265: 9583–9586
  • Tsunoda Y. Oscillatory Ca2+ signaling and its cellular function. New Biologist 1991; 3: 3–17
  • Adey W. R. Collective properties of cell membranes. Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems, B. Norden, C. Ramel. Oxford University Press, Oxford 1992; 47–77
  • Kaiser F. Non-linear dynamics and biophysical systems. I. Interaction of static and periodic fields with nonlinear periodic processes. URSI-Kleinheubacher Berichte. 1994; 37: 763–769
  • Kaiser F. Coherent oscillations—their role in the interaction of weak ELM-fields with cellular systems. Neural Network World 1995; 5: 751–762
  • Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992; 6: 3177–3185
  • Karabakhtsian R., Broude N., Shalts N., Kochlatyi S., Goodman R., Henderson A. S. Calcium is necessary in the cell response to EM fields. FEBS Lett. 1994; 349: 1–6
  • Yost M. G., Liburdy R. P. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 1992; 296: 117–122
  • Kataev A. A., Alexandrov A. A., Tikhonova L. I., Berestovsky G. N. Frequency-dependent electromagnetic millimeter-wave effects on ionic currents in the cell membrane of Nitellopsis: nonthermal action. Biophysics 1993; 38: 445–460
  • Geletyuk V. I., Kazachenko V. N., Chemeris N. K., Fesenko E. E. Dual effect of microwaves on single Ca2+-activated K+ channels in cultured kidney cells Vero. FEBS Lett. 1995; 359: 85–88
  • Kullnick U. Do weak, low pulsed frequency, high-frequency electromagnetic or magnetic-fields alter the basic bioelectrical parameters of nerve-cells in Vineyard snails (Helix pomatia L)? 1. Electromagnetic-fields. Bioelectrochem. Bioenerg. 1995; 37: 39–45
  • Carson J. J., Prato F. S., Drost D. J., Diesbourg L. D., Dixon S. J. Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells. Am. J. Physiol. 1990; 259: C687–692
  • Lindstrom E., Lindstrom P., Berglund A., Lundgren E., Mild K. H. Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 1995; 16: 41–47
  • Chiabrera A., Bianco B., Moggia E., Tommasi T. Basal cell metabolism and sensitivity to low-intensity AM RF fields. Proceedings of the COST 244 Meeting on Biomedical Effects of Electromagnetic Fields; Biological Effects Relevant to Amplitude Modulated RF Fields, Kuopio, September, 3–4, 1995; 7–16
  • Cleary S. F. A review of in vitro studies: low-frequency electromagnetic fields. Am. Ind. Hyg. Assoc. J. 1993; 54: 178–185
  • Elekes E., Szabo L. D., Thuroczy G. Effect on the immune system of mice exposed chronically to 50 Hz amplitude-modulated 2.45 GHz microwaves. Bioelectromagnetics 1996; 17: 246–286
  • Gapeyev A. B., Safronova V. G., Chemeris N. K., Fesenko Y. Y. Modification of the activity of mouse peritoneal neutrophils on exposure to millimetre waves in the near and far zones of the emitter. Biophysics 1996; 41: 219–234
  • Gapeyev A. B., Safronova V. G., Chemeris N. K., Fesenko E. E. Inhibition of the production of reactive oxygen species in mouse peritoneal neutrophils by millimeter wave radiation in the near and far field zones of the radiator. Bioelectrochem. Bioenerg. 1997; 43: 217–220
  • Gapeyev A. B., Yakushina V. S., Chemeris N. K., Fesenko Y. Y. Modulated low-intensity extremely high-frequency electromagnetic radiation activates or inhibits the respiratory burst of neutrophils as a function of the modulation frequency. Biophysics 1997; 42: 1149–1158
  • Safronova V. G., Gapeyev A. B., Alovskaya A. A., Gabdulkhakova A. G., Chemeris N. K., Fesenko Y. Y. Millimetre waves inhibit the synergy effect of the calcium ionophore A23187 and a phorbol ester in the activation of the respiratory burst of the neutrophils. Biophysics 1997; 42: 1297–1303
  • Gapeyev A. B., Yakushina V. S., Chemeris N. K., Fesenko E. E. Modification of production of reactive oxygen species in mouse peritoneal neutrophils on exposure to low-intensity modulated millimeter wave radiation. Bioelectrochem. Bioenerg. 1998; 46: 267–272
  • Alovskaya A. A., Gabdulkhakova A. G., Gapeyev A. B., Dedkova Y. N., Safronova V. G., Fesenko E. E., Chemeris N. K. Biological effect of the EHF EMR depends on the functional status of neutrophils. Herald Mod. Med. Techn. 1998; 5: 11–15, in Russian
  • Goldbeter A., Dupont G., Berridge M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA 1990; 87: 1461–1465
  • Swillens S., Mercan D. Computer simulation of a cytosolic calcium oscillator. Biochem. J. 1990; 271: 835–838
  • Meyer T., Stryer L. Calcium spiking. Annu. Rev. Biophys. Biophys. Chem. 1991; 20: 153–174
  • Eichwald C., Kaiser F. Model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal pathway. Biophys. J. 1993; 65: 2047–2058
  • Stucki J. W., Somogyi R. A dialogue on Ca2+ oscillations: an attempt to understand the essentials of mechanisms leading to hormone-induced intracellular Ca2+ oscillations in various kinds of cell on a theoretical level. Biochim. Biophys. Acta 1994; 1183: 453–472
  • Rotnes J. S., Rottingen J-A. Quantitative analysis of cytosolic free calcium oscillations in neutrophils by mathematical modelling. Cell Calcium 1994; 15: 467–482
  • Eichwald C., Kaiser F., Walleczek J. Nonlinear dynamics and biophysical systems: II. Theoretical modeling of intracellular calcium-signaling pathways under the influence of external electromagnetic fields. URSI-Kleinheubacher Berichte. 1994; 37: 771–778
  • Eichwald C., Kaiser F. Model for external influences on cellular signal transduction pathways including cytosolic calcium oscillations. Bioelectromagnetics 1995; 16: 75–85
  • Kaimachnikov N. P., Lisnichuk L. Ya. A model for Ca2+ oscillations in lymphocytes based on the regulation of Ca2+ influx into the cell. Biol. Membr. 1995; 12: 105–112, in Russian
  • Sneyd J., Keizer J., Sanderson M. J. Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J. 1995; 9: 1463–1472
  • Gapeyev A. B., Chemeris N. K. Model analysis of nonlinear modification of neutrophil calcium homeostasis under the influence of modulated electromagnetic radiation of extremely high frequencies. J. Biol. Phys., 25 193–209 1999 in press
  • Gapeyev A. B., Chemeris N. K. Model approach to the analysis of effects of modulated electromagnetic radiation on animal cells. Biofizika, 2000 (in press) (in Russian)
  • Campbell A. K., Hallet M. B. Measurement of intracellular calcium ions and oxygen radicals in polymorphonuclear leukocyte-erythrocyte “ghost” hybrids. J. Physiol. 1983; 338: 537–550
  • von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 1986; 324: 369–372
  • Demaurex N., Monod A., Lew D. P., Krause K.-H. Characterization of receptor-mediated and store-regulated Ca2+ influx in human neutrophils. Biochem. J. 1994; 297: 595–601
  • Berridge M. J. Capacitative calcium entry. Biochem. J. 1995; 312: 1–11
  • Lew D. P. Receptor signalling and intracellular calcium in neutrophil activation. Eur. J. Clin. Invest. 1989; 19: 338–346
  • Bezprozvanny I., Watras J., Ehrlich B. Bell-shaped calcium response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351: 751–754
  • Grundler W., Kaiser F. Experimental evidence for coherent excitations correlated with cell growth. Nanobiology 1992; 1: 163–176
  • Eichwald C., Walleczek J. Activation-dependent and biphasic electromagnetic field effects: model based on cooperative enzyme kinetics in cellular signaling. Bioelectromagnetics 1996; 17: 427–435
  • Galvanovskis J., Sandblom J. Periodic forcing of intracellular calcium oscillators. Theoretical studies of the effects of low frequency fields on the magnitude of oscillations. Bioelectrochem. Bioenerg. 1998; 46: 161–174
  • Galvanovskis J., Sandblom J. Amplification of electromagnetic signals by ion channels. Biophys. J. 1997; 73: 3056–3065
  • Bezrukov S. M., Vodyanoy I. Signal transduction across alamethitin ion channels in the presence of noise. Biophys. J. 1997; 73: 2456–2464
  • Moon F. C. Chaotic Vibrations. An Introduction for Applied Scientists and Engineers. John Wiley & Sons, New York 1987

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.