39
Views
5
CrossRef citations to date
0
Altmetric
Original

SNAIL NEURON BIOELECTRIC ACTIVITY INDUCED UNDER STATIC OR SINUSOIDAL MAGNETIC FIELDS REPRODUCES MAMMAL NEURON RESPONSES UNDER TRANSCRANIAL MAGNETIC STIMULATION

&
Pages 303-319 | Published online: 11 Sep 2000

REFERENCES

  • Polson M. J.R., Barker A. T., Freeston I. L. Stimulation of nerve trunks with time-varying magnetic fields. Med. Biol. Eng. Comput. 1982; 20: 243–244
  • Chokroverty M. D., Duvoisin R. C. Magnetic stimulation of the peripheral nerves. The Thirty-Fourth Annual Meeting of the American Association of Electromyography and Electrodiagnosis. Muscle Nerve Suppl. 1987; 16: 642
  • Yamaguchi M., Yamada S., Daimon N., Yamamoto I., Kawakami T., Takenaka T. Electromagnetic mechanism of magnetic nerve stimulation. J. Appl. Phys. 1988; 66: 1459–1465
  • Barker A. T., Jalinous R., Freeston I. L. Noninvasive stimulation of human motor cortex. Lancet 1985; 1: 1106–1107
  • Mills K. R. Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurones. Trends Neurosci. 1991; 9: 401–405
  • Walker J. L., Evans J. M., Resig P., Guarnieri S., Meade P., Sisken B. S. Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp. Neurol. 1994; 125: 302–305
  • Reilly J. P. Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Med. Biol. Eng. Comput. 1989; 27: 101–110
  • Ueno S., Hiwaki O. Spinal reflex evoked by a pair of opposing pulsed magnetic fields. J. Appl. Phys., 69: 6019–6021
  • Evans B. A., Litchy W. J., Daube J. R. The utility of magnetic stimulation for routine peripheral nerve conduction studies. Muscle Nerve 1988; 11: 1074–1078
  • Kitagawa H., Moller A. R. Conduction pathways and generators of magnetic evoked spinal cord potentials: a study in monkeys, Electroencephalogr. Clin. Neurophysiol. 1994; 93: 57–67
  • Chokroverty S. Magnetic stimulation of the human peripheral nerves. Electromyogr. Clin. Neurophysiol. 1989; 29: 409–416
  • Triggs W. J., Calvanio R., Macdonell R. A.L., Cros D., Chiappa K. H. Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation. Brain Res. 1994; 636: 270–276
  • Baker S. N., Olivier E., Lemon R. N. Task-related variation in corticospinal output evoked by transcranial magnetic stimulation in the macaque monkey. J. Physiol.(Lond.) 1995; 488: 795–801
  • Grafman J., Pascual-Leone A., Alway D., Nichelli P., Gomez-Tortosa E., Hallett M. Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 1994; 5: 1157–1160
  • Fuller M., Dobson J., Wieser H. G., Moser S. On the sensitivity of the human brain to magnetic fields: evocation of epileptiform activity. Brain Res. Bull. 1995; 36: 155–159
  • Pascual-Leone A., Houser C. M., Reese K., Shotland L. I., Grafmann J., Sato S., Valls-Sole J., Brasil-Neto J. P., Wasserman E. M., Cohen L. G., Hallet M. Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr. Clin. Neurophysiol. 1993; 89: 120–130
  • Nakamura H., Kitagawa H., Kawaguchi Y., Tsuji H., Takano H., Nakatoh S. Intracortical facilitation and inhibition after paired magnetic stimulation in humans under anesthesia. Neurosci. Lett. 1995; 199: 155–157
  • Werhan K. J., Fong J. K.Y., Meyer B. U., Priori A., Rothwell J. C., Day B. L., Thompson P. D. The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseus muscle. Electroencephalogr. Clin. Neurophysiol 1994; 93: 138–146
  • Ferbert A., Priori A., Rothwell J. C., Day B. L., Colebatch J. G., Marsden C. D. Interhemispheric inhibition of the human motor cortex. J. Physiol. (Lond.) 1992; 453: 525–546
  • Ben-Sachar D., Gazawi H., Riboyad-Levi J., Klein E. Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res. 1999; 16: 78–83
  • Pascual-Leone A., Tormos J. M., Keenan J., Tarazona F., Canete T., Catala M. D. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol. 1998; 15: 333–343
  • Azanza M. J., del Moral A. Effects of static magnetic fields on isolated neurons. J. Phys. (Paris) 1988; 12: C8-2059–2060
  • Kerkut G. A., Lambert J. D.C., Gayton R. J., Loker J. E., Walker R. J. Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa neurons. Comp. Biochem. Physiol 1975; 50A: 1–25
  • Azanza M. J., del Moral A. Neuron firing frequency dependence on the static magnetic field intensity. J. Magn. Magn. Mat. 1995; 140–144: 1464–1465
  • Calvo A. C., Azanza M. J. Electrophysiologic responses of snail neurons under applied 50 Hz alternating magnetic fields. Electro- Magnetobiol. 1999; 18: 305–312
  • Azanza M. J., del Moral A. Isolated neuron amplitude spike decrease under static magnetic fields. J. Magn. Magn. Mat. 1996; 157–158: 593–594
  • Azanza M. J., del Moral A. ELF-magnetic field induced effects on the bioelectric activity of single neurone cells. J. Magn. Magn. Mat. 1998; 177–181: 1451–1452
  • Berardelli A., Inghilleri M., Rothwell J. C., Curra A., Gilio F., Modugno N., Manfredi M. Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain. Res. 1998; 122: 79–84
  • Rudiak D., Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation, Electroencephalogr. Clin. Neurophysiol 1994; 93: 358–371
  • Azanza M. J. The molecular basis of neuronal magnetosensitivity. Trends Comp. Biochem. Physiol. 1993; 1: 1083–1098
  • Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields. Proc. Natl. Acad. Sci. USA 1976; 73: 1999–2003
  • Bawin S. M., Adey W. R., Sabott M. I. Ionic factors in release of45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc. Natl. Acad. Sci. USA 1978; 75: 6314–6318
  • Blackman C. F., Benane S. G., Kinney L. S., Joines W. T., House D. E. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radat. Res. 1982; 92: 510–520
  • Lin-Liu S., Adey W. R. Low frequency amplitude-modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics 1982; 3: 309–322
  • Dutta S. K., Subramoniam A., Ghosh B., Parshad R. Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture. Bioelectromagnetics 1984; 5: 71–78
  • Dixey R., Rein G. 3H-noradrenaline release potentiated in a clonal nerve cell line by low intensity pulsed magnetic fields. Nature 1982; 296: 253–256
  • Kavaliers M., Ossenkopp K. P. Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium. Brain Res. 1986; 379: 30–38
  • Bolshakov M. A., Alekseev S. I. Pulse microwave radiation influence on the electrical activity of snail neurons. Izv. Akad. Nauk. SSSR. SER. Biol. 1987; 0: 312–314
  • Azanza M. J., del Moral A. Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog. Neurobiol. 1994; 44: 517–601
  • Danilov V. I., Parsmintsev V. V., Trofimova O. I., Turkin W., Shvanevan B. About reversible effect of the changing in time magnetic field of mollusc neurons. Biofizika 1986; 31: 838–841
  • Galvanovskis J., Sandblom J., Bergqvist I., Hamnerius Y. ELF magnetic field stimulated intracellular Ca2+ oscillations. Proceedings of the Sixteenth Annual Meeting of the Bioelectrochemistry Society. 1994; 90
  • Lindstrom E., Lindstrom P., Berglund A., Mild K. H., Lundgren E. Intracellular calcium oscillations induced in a T-cell line by a weak 50 Hz magnetic field. J. Cell. Physiol. 1993; 156: 395–398
  • Tuffet S., Lyle D. B., Veyret B., Swicord M. L. Flow cytometric study of the effects of pulsed magnetic fields on the calcium signal in activated lymphocytes. Proceedings of the Sixteenth Annual Meeting of the Bioelectrochemistry Society. 1994; 81
  • Azanza M. J. Steady magnetic fields mimic the effect of caffeine on neurons. Brain Res. 1989; 489: 195–198
  • Azanza M. J. Characterization of neuronal membrane K+ and Ca2+ channels operated under steady magnetic fields exposure. J. Magn. Magn. Mat. 1990; 83: 527–529
  • del Moral A., Azanza M. J. Model for the effect of static magnetic field on neurons. J. Magn. Magn. Mat. 1992; 114: 240–242
  • Azanza M. J., Blott B. H., del Moral A., Peg M. T. Measurement of the red blood cell membrane magnetic susceptibility. Bioelectrochem. Bionerg. 1993; 30: 45–53
  • Miller R. J. Calcium signaling in neurons. Trends Neurosci. 1988; 11: 415–419
  • Blaustein M. P. Calcium transport and buffering in neurons. Trends Neurosci. 1988; 11: 438–443
  • Miller R. J. The control of neuronal Ca2+ homeosthasis. Prog. Neurobiol. 1991; 37: 255–285
  • Kuba K., Nishi S. Rhythmic hyperpolarizations and depolarizations of sympathetic ganglion cells induced by caffeine. J. Neurophysiol. 1976; 39: 547–563
  • Calvo A. C., Azanza M. J. Synaptic neuron activity under applied 50 Hz alternating magnetic fields. Comp. Biochem. Physiol. C 1999; 124: 99–107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.