92
Views
11
CrossRef citations to date
0
Altmetric
Original

SENSORY TRANSDUCTION AS A PROPOSED MODEL FOR BIOLOGICAL DETECTION OF ELECTROMAGNETIC FIELDS

&
Pages 153-175 | Published online: 30 Jun 2001

REFERENCES

  • Kaune W. D., Stevens R. G., Callahan N. J., Severson R. K., Thomas D. B. Residential Magnetic and Electric Fields. Bioelectromagnetics 1987; 8: 315–335
  • Silva M., Hummon N., Rutter D., Hooper C. Power Frequency Magnetic Fields in the Home. IEEE Trans. Power Delivery 1989; 4: 465–478
  • Yost M. G., Lee G. M., Duane B. D., Fisch J., Neutra R. R. California Protocol for Measuring 60-Hz Magnetic Fields from Residences. Appl. Occup. Environ. Hyg. 1992; 7: 772–777
  • Marino A. A., Berger T. J., Austin B. P., Becker R. O., Hart F. X. In Vivo Bioelectrochemical Changes Associated with Exposure to ELF Electric Fields. Physiol. Chem. Phys. 1977; 9: 433–441
  • Mann K., Wagner P., Brunn G., Hassan F., Hiemke C., Röschke J. Effects of Pulsed High-Frequency Electromagnetic Fields on the Neuroendocrine System. Neuroendocrinology 1998; 67: 139–144
  • Hackman R. M., Graves H. B. Corticosterone Levels in Mice Exposed to High-Intensity Electric Fields. Behav. Neural. Biol. 1981; 32: 201–213
  • Free M. J., Kaune W. T., Phillips R. D., Cheng H. C. Endocrinological Effects of Strong 60-Hz Electric Fields on Rats. Bioelectromagnetics 1981; 2: 105–121
  • Vasquez B. J., Anderson L. E., Lowery C. I., Adey W. R. Diurnal Patterns in Brain Biogenic Amines of Rats Exposed to 60-Hz Electric Fields. Bioelectromagnetics 1988; 9: 229–236
  • Zecca L., Ferrario P., Margonato V., Cerretelli P., Zonta N. Neurotransmitter Amino Acid Variations in Striatum of Rats Exposed to 50 Hz Electric Fields. Biochim. Biophys. Acta 1991; 1075: 1–5
  • Seegal R. F., Wolpaw J. R., Dowman R. Chronic Exposure of Primates to 60-Hz Electric and Magnetic Fields: II. Neurochemical Effects. Bioelectromagnetics 1989; 10: 289–301
  • Zecca L., Mantegazza C., Margonato V., Cerretelli P., Caniatti M., Piva F., Dondi D., Hagino N. Biological Effects of Prolonged Exposure to ELF Electromagnetic Fields in Rats: III. 50 Hz Electromagnetic Fields. Bioelectromagnetics 1998; 19: 57–66
  • Carmaciu R., Groza P., Daneliuc E. Effects of a High-Tension Electric Field on the Secretion of Antidiuretic Hormone in Rats. Physiologie 1977; 14: 79–83
  • Anderson L. E. Biological Effects of Extremely Low-Frequency Electromagnetic Fields: In Vivo Studies. Am. Ind. Hyg. Assoc. J. 1993; 54: 186–196
  • Portet R., Cabanes J. Development of Young Rats and Rabbits Exposed to a Strong Electric Field. Bioelectromagnetics 1988; 9: 95–104
  • Reiter R. J. Melatonin Suppression by Static and Extremely Low Frequency Electromagnetic Fields: Relationship to the Reported Increased Incidence of Cancer. Rev. Environ. Health 1994; 10: 171–186
  • Shepherd G. M. Neurobiology. Oxford University Press, , New York 1994; 515–516
  • Yellon S. M. Acute 60 Hz Magnetic Field Exposure Effects on the Melatonin Rhythm in the Pineal Gland and Circulation of the Adult Djungarian Hamster. J. Pineal Res. 1994; 16: 136–144
  • Rosen L. A., Barber I., Lyle D. B. 60 Hz Magnetic Field Suppresses Melatonin Production in Pinealocytes. Bioelectromagnetics 1998; 16: 123–127
  • Lerchl A., Zachmann A., Ali M. A., Reiter R. J. The Effects of Pulsing Magnetic Fields on Pineal Melatonin Synthesis in a Teleost Fish (Brook Trout, Salvelinus fontinalis). Neurosci. Lett. 1998; 256: 171–173
  • Karasek M., Woldanska-Okonska M., Czernicki J., Zylinska K., Swietoslawski J. Chronic Exposure to 2.9 mT, 40 Hz Magnetic Field Reduces Melatonin Concentrations in Humans. J. Pineal Res. 1998; 25: 240–244
  • Reiter R. J., Tan D. X., Poeggeler B., Kavet R. Inconsistent Suppression of Nocturnal Pineal Melatonin Synthesis and Serum Melatonin Levels in Rats Exposed to Pulsed DC Magnetic Fields. Bioelectromagnetics 1998; 19: 318–329
  • Gavalas R. J., Walter D. O., Hamer J., Adey W. R. Effect of Low-Level, Low-Frequency Electric Fields on EEG and Behavior in Macaca nemestrina. Brain Res. 1970; 18: 491–501
  • Lyskov E. B., Juutilainen J., Jousmäki V., Partanen J., Medvedev S., Hänninen O. Effects of 45-Hz Magnetic Fields on the Functional State of the Human Brain. Bioelectromagnetics 1993; 14: 87–95
  • Heusser K., Tellschaft D., Thoss F. Influence of an Alternating 3-Hz Magnetic Field with an Induction of 0.1 mT on Chosen Parameters of a Human Occipital EEG. Neurosci. Lett. 1997; 239: 57–60
  • Schienle A., Stark R., Walter B., Vaitl D., Kulzer R. Effects of Low-Frequency Magnetic Fields on Electrocortical Activity in Humans: A Sferics Simulation Study. Int. J. Neurosci. 1997; 90: 21–36
  • Reiser H., Dimpfel W., Schober F. The Influence of Electromagnetic Fields on Human Brain Activity. Eur. J. Med. Res. 1995; 1: 27–32
  • von Klitzing L. Static Magnetic Fields Increase the Power Intensity of EEG of Man. Brain Res. 1989; 483: 201–203
  • Bell G. B., Marino A. A., Chesson A. L. Frequency-Specific Responses in the Human Brain Caused by Electromagnetic Fields. J. Neurol. Sci. 1994; 123: 26–32
  • Marino A. A., Bell G. B., Chesson A. Low-Level EMFs Are Transduced Like Other Stimuli. J. Neurol. Sci. 1996; 144: 99–106
  • Bodamyali T., Bhatt B., Hughes F. J., Winrow V. R., Kanczler J. M., Simon B., Abbott J., Blake D. R., Stevens C. R. Pulsed Electromagnetic Fields Simultaneously Induce Osteogenesis and Upregulate Transcription of Bone Morphogenetic Proteins 2 and 4 in Rat Osteoblasts In Vitro. Biochem. Biophys. Res. Commun. 1998; 250: 458–461
  • Takano-Yamamoto T., Kawakami M., Sakuda M. Effect of a Pulsing Electromagnetic Field on Demineralized Bone-Matrix-Induced Bone Formation in a Bony Defect in the Premaxilla of Rats. J. Den. Res. 1992; 71: 1920–1925
  • Shankar V. S., Simon B. J., Bax C. M., Pazianas M., Moonga B. S., Adebanjo O. A., Zaidi M. Effects of Electromagnetic Stimulation on the Functional Responsiveness of Isolated Rat Osteoclasts. J. Cell. Physiol. 1998; 176: 537–544
  • Konrad K., Sevcic K., Földes K., Piroska E., Molnár E. Therapy with Pulsed Electromagnetic Fields in Aseptic Loosening of Total Hip Prostheses: A Prospective Study. Clin. Rheumatol. 1996; 15: 325–328
  • Eyres K. S., Saleh M., Kanis J. A. Effects of Pulsed Electromagnetic Fields on Bone Formation and Bone Loss during Limb Strengthening. Bone 1996; 18: 505–509
  • Suvorov N. B., Vasilevskii N. N., Ur'iash V. V. Systemic Effects of the Interaction of an Organism and Microwaves. Radiobiologiia 1986; 26: 365–371
  • Ramon C., Powell M. R. Preliminary Report: Modification of Cardiac Contraction Rate by Pulsed Magnetic Fields. Bioelectromagnetics 1992; 13: 303–311
  • Hilton D. I., Phillips R. D. Cardiovascular Response of Rats Exposed to 60-Hz Electric Fields. Bioelectromagnetics 1980; 1: 55–64
  • Gadzicka E., Bortkiewicz A., Zmyslony M., Palczynski C. Evaluation of Selected Functional Circulation Parameters of Workers from Various Occupational Groups Exposed to Electromagnetic Fields of High Frequency. III. 24-h Monitoring of Arterial Blood Pressure (ABP). Med. Pr. 1997; 48: 15–24
  • Sastre A., Cook M. R., Graham C. Nocturnal Exposure to Intermittent 60 Hz Magnetic Fields Alters Human Cardiac Rhythm. Bioelectromagnetics 1998; 19: 98–106
  • Savitz D. A., Kiao D., Sastre A., Kleckner R. C., Kavet R. Magnetic Field Exposure and Cardiovascular Disease Mortality among Electric Utility Workers. Am. J. Epidemiol. 1999; 149: 135–142
  • Cadossi R., Bersani F., Cossarizza A., Zucchini P., Emilia G., Torelli G., Franceschi C. Lymphocytes and Low-Frequency Electromagnetic Fields. FASEB J. 1992; 6: 2667–2674
  • Walleczek J., Budinger T. F. Pulsed Magnetic Field Effects on Calcium Signaling in Lymphocytes: Dependence on Cell Status and Field Intensity. FEBS Lett. 1992; 314: 351–355
  • Cossarizza A., Monti D., Bersani F., Cantini M., Cadossi R., Sacchi A., Franceschi C. Extremely Low Frequency Pulsed Electromagnetic Fields Increase Cell Proliferation in Lymphocytes from Young and Aged Subjects. Biochem. Biophys. Res. Commun. 1989; 160: 692–698
  • Mooney N. A., Smith R. E., Watson B. W. Effect of Extremely-Low-Frequency Pulsed Magnetic Fields on the Mitogenic Response of Peripheral Blood Mononuclear Cells. Bioelectromagnetics 1986; 7: 387–394
  • Petrini M., Polidori R., Ambrogi F., Vaglini F., Zaniol P., Ronca G., Conte A. Effects of Different Low-Frequency Electromagnetic Fields on Lymphocyte Activation: At Which Cellular Level?. J. Bioelectr. 1990; 9: 159–166
  • Phillips J. L. Transferrin Receptors and Natural Killer Cell Lysis. A Study Using Colo 205 Cells Exposed to 60 Hz Electromagnetic Fields. Immunol. Lett. 1986; 13: 295–299
  • de Seze R., Bouthet C., Tuffet S., Deschaux P., Caristan A., Moreau J. M., Veyret B. Effects of Time-Varying Uniform Magnetic Fields on Natural Killer Cell Activity and Antibody Response in Mice. Bioelectromagnetics 1993; 14: 405–412
  • Marino A. A., Becker R. O., Ullrich B. The Effect of Continuous Exposure to Low Frequency Electric Fields on Three Generations of Mice: A Pilot Study. Experientia 1976; 32: 565
  • Delgado J. M., Leal J., Monteagudo J., Gracia M. G. Embryological Changes Induced by Weak, Extremely Low Frequency Electromagnetic Fields. J. Anat. 1982; 134: 533–551
  • Thomas J. R., Schrot J., Liboff A. R. Low-Intensity Magnetic Fields Alter Operant Behavior in Rats. Bioelectromagnetics 1986; 7: 349–357
  • Short W. O., Goodwill L., Taylor C. W. Alteration of Human Tumor Cell Adhesion by High-Strength Static Magnetic Fields. Invest. Radiol. 1992; 27: 836–840
  • Liboff A. R. Cyclotron Resonance in Membrane Transport. Interaction between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum, , New York 1985; 281–296
  • Blanchard J. P., Blackman C. F. Clarification and Application of an Ion Paramagnetic Resonance Model for Magnetic Field Interactions with Biological Systems. Bioelectromagnetics 1994; 15: 217–238
  • Lednev V. V. Possible Mechanism for the Influence of Weak Magnetic Fields on Biological Systems. Bioelectromagnetics 1991; 12: 71–75
  • McLeod B. R., Liboff A. R. Dynamic Characteristics of Membrane Ions in Multifield Configurations of Low-Frequency Electromagnetic Radiation. Bioelectromagnetics 1986; 7: 177–189
  • Wiesenfeld K., Moss F. Stochastic Resonance and the Benefits of Noise: From Ice Ages to Crayfish and SQUIDs. Nature 1995; 373: 33–36
  • Moss F., Pei X. Stochastic Resonance. Neurons in parallel. Nature 1995; 376: 211–212
  • Bezrukov S. M., Vodyanoy I. Noise-Induced Enhancement of Signal Transduction across Voltage-Dependent Ion Channels. Nature 1995; 378: 362–364
  • Rozek R. J., Sherman M. L., Liboff A. R., McLeod B. R., Smith S. D. Nifedipine Is an Antagonist to Cyclotron Resonance Enhancement of 45 Ca Incorporation in Human Lymphocytes. Cell Calcium 1987; 8: 413–427
  • Coulton L. A., Barker A. T. Magnetic Fields and Intracellular Calcium: Effects on Lymphocytes Exposed to Conditions for ‘Cyclotron Resonance.’. Phys. Med. Biol. 1993; 38: 347–360
  • Smith S. D., McLeod B. R., Liboff A. R., Cooksey K. Calcium Cyclotron Resonance and Diatom Mobility. Bioelectromagnetics 1987; 8: 215–227
  • Prato F. S., Kavaliers M., Carson J. J. Behavioural Evidence that Magnetic Field Effects in the Land Snail, Cepaea nemoralis, Might Not Depend on Magnetite or Induced Electric Currents. Bioelectromagnetics 1996; 17: 123–130
  • Blackman C. F., Blanchard J. P., Benane S. G., House D. E., Elder J. A. Double Blind Test of Magnetic Field Effects on Neurite Outgrowth. Bioelectromagnetics 1998; 19: 204–209
  • Bezrukov S. M., Vodyanoy I. Stochastic Resonance in Non-Dynamical Systems without Response Thresholds. Nature 1997; 385: 319–321
  • Kashimori Y., Funakubo H., Kambara T. Effect of Syncytium Structure of Receptor Systems on Stochastic Resonance Induced by Chaotic Potential Fluctuation. Biophys. J. 1998; 75: 1700–1711
  • Blakemore R. P., Maratea D., Wolfe R. S. Isolation and Pure Culture of a Freshwater Magnetic Spirillum in Chemically Defined Medium. J. Bacteriol. 1979; 140: 720–729
  • Schultheiss-Grassi P. P., Wessiken R., Dobson J. TEM Investigations of Biogenic Magnetite Extracted from the Human Hippocampus. Biochim. Biophys. Acta 1999; 1426: 212–216
  • Moatamed F., Johnson F. B. Identification and Significance of Magnetite in Human Tissues. Arch. Pathol. Lab. Med. 1986; 110: 618–621
  • Kirschvink J. L., Kobayashi-Kirschvink A., Woodford B. J. Magnetite Biomineralization in the Human Brain. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 7683–7687
  • Grassi-Schultheiss P. P., Heller F., Dobson J. Analysis of Magnetic Material in the Human Heart, Spleen and Liver. Biometals 1997; 10: 351–355
  • Kirschvink J. L., Kobayashi-Kirschvink A., Diaz-Ricci J. C., Kirschvink S. J. Magnetite in Human Tissues: A Mechanism for the Biological Effects of Weak ELF Magnetic Fields. Bioelectromagnetics 1992; Suppl. 1: 101–113
  • Bazylinski D. A., Garratt-Reed A. J., Frankel R. B. Electron Microscopic Studies of Magnetosomes in Magnetotactic Bacteria. Microsc. Res. Tech. 1994; 27: 389–401
  • Ofer S., Nowik I., Bauminger E. R., Papaefthymiou G. C., Frankel R. B., Blakemore R. P. Magnetosome Dynamics in Magnetotactic Bacteria. Biophys. J. 1984; 46: 57–64
  • Blakemore R. P. Magnetotactic bacteria. Annu. Rev. Microbiol. 1982; 36: 217–238
  • Blakemore R. Magnetotactic bacteria. Science 1975; 190: 377–379
  • Kirschvink J., Padmanabha S., Boyce C., Oglesby J. Measurement of the Threshold Sensitivity of Honeybees to Weak, Extremely Low-Frequency Magnetic Fields. J. Exp. Biol. 1997; 200: 1363–1368
  • Beason R., Dussourd N., Deutschlander M. Behavioural Evidence for the Use of Magnetic Material in Magnetoreception by a Migratory Bird. J. Exp. Biol. 1995; 198: 141–146
  • Walker M. M., Quinn T. P., Kirschvink J. L., Groot C. Production of Single-Domain Magnetite throughout Life by Sockeye Salmon, Oncorhynchus nerka. J. Exp. Biol. 1988; 140: 51–63
  • Schiff H. Modulation of Spike Frequencies by Varying the Ambient Magnetic Field and Magnetite Candidates in Bees (Apis mellifera). Comp. Biochem. Physiol. 1991; 100: 975–985
  • Adair R. K. Constraints of Thermal Noise on the Effects of Weak 60-Hz Magnetic Fields Acting on Biological Magnetite. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 2925–2929
  • Olanow C. W. A Radical Hypothesis for Neurodegeneration. Trends Neurosci. 1993; 16: 439–444, [See Comments]
  • Lander H. M. An Essential Role for Free Radicals and Derived Species in Signal Transduction. FASEB J. 1997; 11: 118–124
  • Cohen R. A., Plane F., Najibi S., Huk I., Malinski T., Garland C. J. Nitric Oxide Is the Mediator of Both Endothelium-Dependent Relaxation and Hyperpolarization of the Rabbit Carotid Artery. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 4193–4198
  • Repacholi M. H., Greenebaum B. Interaction of Static and Extremely Low Fre-quency Electric and Magnetic Fields with Living Systems: Health Effects and Research Needs. Bioelectromagnetics 1999; 20: 133–160
  • Goodman E. M., Greenebaum B., Marron M. T. Effects of Electromagnetic Fields on Molecules and Cells. Int. Rev. Cytol. 1995; 158: 279–338
  • Fairbairn D. W., O'Neill K. L. The Effect of Electromagnetic Field Exposure on the Formation of DNA Single Strand Breaks in Human Cells. Cell Mol. Biol. 1994; 40: 561–567
  • Bawin S. M., Satmary W. M., Jones R. A., Adey W. R., Zimmerman G. Extremely-Low-Frequency Magnetic Fields Disrupt Rhythmic Slow Activity in Rat Hippocampal Slices. Bioelectromagnetics 1996; 17: 388–395
  • Byus C. V., Pieper S. E., Adey W. R. The Effects of Low-Energy 60-Hz Environmental Electromagnetic Fields upon the Growth-Related Enzyme Ornithine Decarboxylase. Carcinogenesis 1987; 8: 1385–1389
  • Mevissen M., Kietzmann M., Loscher W. In Vivo Exposure of Rats to a Weak Alternating Magnetic Field Increases Ornithine Decarboxylase Activity in the Mammary Gland by a Similar Extent as the Carcinogen DMBA. Cancer Lett. 1995; 90: 207–214
  • Byus C. V., Kartun K., Pieper S., Adey W. R. Increased Ornithine Decarboxylase Activity in Cultured Cells Exposed to Low Energy Modulated Microwave Fields and Phorbol Ester Tumor Promoters. Cancer Res. 1988; 48: 4222–4226
  • Taoka S., Padmakumar R., Grissom C. B., Banerjee R. Magnetic Field Effects on Coenzyme B12-Dependent Enzymes: Validation of Ethanolamine Ammonia Lyase Results and Extension to Human Methylmalonyl CoA Mutase. Bioelectromagnetics 1997; 18: 506–513
  • Harkins T. T., Grissom C. B. Magnetic Field Effects on B12 Ethanolamine Ammonia Lyase: Evidence for a Radical Mechanism. Science 1994; 263: 958–960
  • Grissom C. B., Natarajan E. Use of Magnetic Field Effects to Study Coenzyme B12-Dependent Reactions. Methods Enzymol. 1997; 281: 235–247
  • Uckun F. M., Kurosaki T., Jin J., Jun X., Morgan A., Takata M., Bolen J., Luben R. Exposure of B-Lineage Lymphoid Cells to Low Energy Electromagnetic Fields Stimulates Lyn Kinase. J. Biol. Chem. 1995; 270: 27666–27670
  • Holian O., Astumian R. D., Lee R. C., Reyes H. M., Attar B. M., Walter R. J. Protein Kinase C Activity is Altered in HL60 Cells Exposed to 60 Hz AC Electric Fields. Bioelectromagnetics 1996; 17: 504–509
  • Tuinstra R., Goodman E., Greenebaum B. Protein Kinase C Activity following Exposure to Magnetic Field and Phorbol Ester. Bioelectromagnetics 1998; 19: 469–476
  • Ikehara T., Yamaguchi H., Miyamoto H. Effects of Electromagnetic Fields on Membrane Ion Transport of Cultured Cells. J. Med. Invest. 1998; 45: 47–56
  • Blank M. Biological Effects of Environmental Electromagnetic Fields: Molecular Mechanisms. Biosystems 1995; 35: 175–178
  • Goffin V., Bouchard B., Ormandy C. J., Weimann E., Ferrag F., Touraine P., Bole-Feysot C., Maaskant R. A., Clement-Lacroix P., Edery M., Binart N., Kelly P. A. Prolactin: A Hormone at the Crossroads of Neuroimmunoendocrinology. Ann. N.Y. Acad. Sci. 1998; 840: 498–509
  • Azad N., Agrawal L., Emanuele M. A., Kelley M. R., Mohagheghpour N., Lawrence A. M., Emanuele N. V. Neuroimmunoendocrinology. Am. J. Reprod. Immunol. 1991; 26: 160–172
  • Gluckman B. J., Neel E. J., Netoff T. I., Ditto W. L., Spano M. L., Schiff S. J. Electric Field Suppression of Epileptiform Activity in Hippocampal Slices. J. Neurophysiol. 1996; 76: 4202–4205
  • Roberts W. M., Howard J., Hudspeth A. J. Hair Cells: Transduction, Tuning, and Transmission in the Inner Ear. Annu. Rev. Cell Biol. 1988; 4: 63–92
  • Neely J. G. Mechanisms of Hearing: Cochlear Physiology. Ear Nose Throat J. 1985; 64: 292–307
  • Hibino H., Horio Y., Inanobe A., Doi K., Ito M., Yamada M., Gotow T., Uchiyama Y., Kawamura M., Kubo T., Kurachi Y. An ATP-Dependent Inwardly Rectifying Potassium Channel, KAB-2 (Kir4.1), in Cochlear Stria Vascularis of Inner Ear: Its Specific Subcellular Localization and Correlation with the Formation of Endocochlear Potential. J. Neurosci. 1997; 17: 4711–4721
  • Tilney L. G., Derosier D. J., Mulroy M. J. The Organization of Actin Filaments in the Stereocilia of Cochlear Hair Cells. J. Cell Biol. 1980; 86: 244–259
  • DeRosier D. J., Tilney L. G., Egelman E. Actin in the Inner Ear: The Remarkable Structure of the Stereocilium. Nature 1980; 287: 291–296
  • Pickles J. O., Corey D. P. Mechanoelectrical Transduction by Hair Cells. Trends Neurosci. 1992; 15: 254–259
  • Corey D. P., Hudspeth A. J. Ionic Basis of the Receptor Potential in a Vertebrate Hair Cell. Nature 1979; 281: 675–677
  • Hudspeth A. J. How the Ear's Works Work. Nature 1989; 341: 397–404
  • Hackney C. M., Furness D. N. Mechanotransduction in Vertebrate Hair Cells: Structure and Function of the Sterociliary Bundle. Am. J. Physiol. 1995; 268: C1–C13
  • Torre V., Ashmore J. F., Lamb T. D., Menini A. Transduction and Adaptation in Sensory Receptor Cells. J. Neurosci. 1995; 15: 7757–7768
  • Fettiplace R., Crawford A. C., Evans M. G. The Hair Cell's Mechanoelectrical Transducer Channel. Ann. N.Y. Acad. Sci. 1992; 656: 1–11
  • Eybalin M. Neurotransmitters and Neuromodulators of the Mammalian Cochlea. Physiol. Rev. 1993; 73: 309–373
  • Katoaka Y., Ohmori H. Of Known Neurotransmitters, Glutamate is the Most Likely to be Released from Chick Cochlear Hair Cells. J. Neurophysiol. 1996; 76: 1870–1879
  • Liberman M. C. Single-Neuron Labeling in the Cat Auditory Nerve. Science 1982; 217: 175–177
  • Kiang N. Y., Rho J. M., Northrop C. C., Liberman M. C., Ryugo D. K. Hair-Cell Innervation by Spiral Ganglion Cells in Adult Cats. Science 1982; 217: 175–177
  • Baylor D. A., Lamb T. D., Yau K. W. Responses of Retinal Rods to Single Photons. J. Physiol. (Lond.) 1979; 288: 613–634
  • Baylor D. A., Lamb T. D., Yau K. W. The Membrane Current of Single Rod Outer Segments. J. Physiol. (Lond.) 1979; 288: 589–611
  • Hagins W. A., Penn R. D., Yoshikami S. Dark Current and Photocurrent in Retinal Rods. Biophys. J. 1970; 10: 380–412
  • Yau K. W. Phototransduction Mechanism in Retinal Rods and Cones. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 1994; 35: 9–32
  • Detweiler P. B., Gray-Keller M. P. Some Unresolved Issues in the Physiology and Biochemistry of Phototransduction. Curr. Opin. Neurobiol. 1992; 2: 433–438
  • Birge R. R. Nature of the Primary Photochemical Events in Rhodopsin and Bacteriorhodopsin. Biochim. Biophys. Acta 1990; 1016: 293–327
  • Hecht S. The Chemistry of Visual Substrates. Ann. Rev. Biochem. 1942; 11: 465–496
  • Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V. The First Step in Vision: Femtosecond Isomerization of Rhodopsin. Science 1991; 254: 412–415
  • Pugh E. N.J., Lamb T. D. Amplification and Kinetics of the Activation Steps in Phototransduction. Biochim. Biophys. Acta 1993; 1141: 111–149
  • Schmitz Y., Witkovsky P. Dependence of Photoreceptor Glutamate Release on a Dihydropyridine-Sensitive Calcium Channel. Neuroscience 1997; 78: 1209–1216
  • Schmitz Y., Witkovsky P. Glutamate Release by the Intact Light-Responsive Photoreceptor Layer of the Xenopus Retina. J. Neurosci. Methods 1996; 68: 55–60
  • Guyton A. C., Hall J. E. Textbook of Medical Physiology. W.B. Saunders Company, Philadelphia 1984; 462
  • Lindemann B. Taste Reception. Physiol. Rev. 1996; 76: 718–766
  • Stewart R. E., DeSimone J. A., Hill D. L. New Perspectives in a Gustatory Physiology: Transduction, Development, and Plasticity. Am. J. Physiol. 1997; 272: C1–C26
  • Hwang P. M., Verma A., Bredt D. S., Snyder S. H. Localization of Phosphatidylinositol Signaling Components in Rat Taste Cells: Role in Bitter Taste Transduction. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 7395–7399
  • Akabas J. H., Dodd J., Al-Awquati Q. A Bitter Substance Induces a Rise in Intracellular Calcium in a Subpopulation of Rat Taste Cells. Science 1988; 242: 1047–1050
  • Ruiz-Avila L., McLaughlin S. K., Wildman D., McKinnon P. J., Robichon A., Spickofsky N., Margolskee R. F. Coupling of Bitter Receptor to Phosphodiesterase through Transducin in Taste Receptor Cells. Nature 1995; 376: 80–85
  • Cummings T. A., Kinnamon S. C. Apical K− Channels in Necturus Taste Cells. Modulation by Intracellular Factors and Taste Stimuli. J. Gen. Physiol. 1992; 99: 591–613
  • McCutcheon N. B. Sodium Deficient Rats are Unmotivated by Sodium Chloride Solutions Mixed with the Sodium Channel Blocker Amiloride. Behav. Neurosci. 1991; 105: 764–766
  • Schiffman S. S., Suggs M. S., Losee M. L. Effect of Modulators of the Adenylate Cyclase System on Sweet Electrophysiological Taste Responses in Gerbil. Pharmacol. Biochem. Behav. 1994; 48: 991–998
  • Naim M., Ronen T., Striem B. J., Levinson M., Zehavi U. Adenylate Cyclase Responses to Sucrose Stimulation in Membranes of Pig Circumvallate Taste Papillae. Comp. Biochem. Physiol. B 1991; 100: 455–458
  • Striem B. J., Pace U., Zehavi U., Naim M., Lancet D. Sweet Tastants Stimulate Adenylate Cyclase Coupled to GTP-Binding Protein in Rat Tongue Membranes. Biochem. J. 1989; 260: 121–126
  • McLaughlin S. K., McKinnon P. J., Margolskee R. F. Gustductin Is a Taste-Cell-Specific G Protein Closely Related to the Transducins. Nature 1992; 357: 563–569
  • Boughter J. D., Jr., Pumplin D. W., Yu C., Christy R. C., Smith D. V. Differential Expression of Alpha-Gustducin in Taste Bud Populations of the Rat and Hamster. J. Neurosci. 1997; 17: 2852–2858
  • Bernhardt S. J., Naim M., Zehavi U., Lindemann B. Changes in IP3 and Cytosolic Ca2+ in Response to Sugars and Non-Sugar Sweeteners in Transduction of Sweet Taste in the Rat. J. Physiol. (Lond.) 1996; 490: 325–336
  • Lindemann B. Chemoreception: Tasting the Sweet and the Bitter. Curr. Biol. 1996; 6: 1234–1237
  • Gilbertson T. A., Avenet P., Kinnamon S. C., Roper S. D. Proton Currents through Amiloride-Sensitive Na Channels in Hamster Taste Cells. Role in Acid Transduction. J. Gen. Physiol. 1992; 100: 803–824
  • Yamamoto T., Matsuo R., Kiyomitsu Y., Kitamura R. Taste Effects of ‘Umami’ Substances in Hamsters as Studied by Electrophysiological and Conditioned Taste Aversion Techniques. Brain Res 1988; 451: 147–162
  • Kinnamon S. C., Margolskee R. F. Mechanisms of Taste Transduction. Curr. Opin. Neurobiol. 1996; 6: 506–513
  • Cummings T. A., Powell J., Kinnamon S. C. Sweet Taste Transduction in Hamster Taste Cells: Evidence for the Role of Cyclic Nucleotides. J. Neurophysiol. 1993; 70: 2326–2336
  • Avenet P., Lindemann B. Noninvasive Recording of Receptor Cell Action Potentials and Sustained Currents from Single Taste Buds Maintained in the Tongue: The Response to Mucosal NaCl and Amiloride. J. Membr. Biol. 1991; 124: 33–41
  • Kanazawa H., Yoshie S. The Taste Bud and Its Innervation in the Rat as Studied by Immunohistochemistry for PGP 9.5. Arch. Histol. Cytol. 1996; 59: 357–367
  • Hildebrand J. G., Shepherd G. M. Mechanisms of Olfactory Discrimination: Converging Evidence for Common Principles across Phyla. Annu. Rev. Neurosci. 1997; 20: 595–631
  • Rawson N. E., Gomez G., Cowart B., Brand J. G., Lowry L. D., Pribitkin E. A., Restrepo D. Selectivity and Response Characteristics of Human Olfactory Neurons. J. Neurophysiol. 1997; 77: 1606–1613
  • Buck L. B. The Olfactory Multigene Family. Curr. Opin. Neurobiol. 1992; 2: 282–288
  • Restrepo D., Teeter J. H., Schild D. Second Messenger Signaling in Olfactory Transduction. J. Neurobiol. 1996; 30: 37–48
  • Broillet M. C., Firestein S. Direct Activation of the Olfactory Cyclic Nucleotide-Gated Channel through Modification of Sulfhydryl Groups by NO Compounds. Neuron 1996; 16: 377–385
  • Fadool D. A., Estey S. J., Ache B. W. Evidence that a Gq-Protein Mediates Excitatory Odor Transduction in Lobster Olfactory Receptor Neurons. Chem. Senses 1995; 20: 489–498
  • Restrepo D., Okada Y., Teeter J. H. Odorant-Regulated Ca2+ Gradients in Rat Olfactory Neurons. J. Gen. Physiol. 1993; 102: 907–924
  • Sachs F. Mechanical Transduction in Biological Systems. Crit. Rev. Biomed. Eng. 1988; 16: 141–169
  • Sachs F. Mechanical Transduction by Membrane Ion Channels: A Mini Review. Mol. Cell. Biochem. 1991; 104: 57–60
  • Harper A. A. Similarities between Some Properties of the Soma and Sensory Receptors of Primary Afferent Neurones. Exp. Physiol. 1991; 76: 369–377
  • Burgess P., Perl E. Cutaneous mechanoreceptors and nociceptors. Handbook of Sensory Physiology, A. Iggo. Springer-Verlag, , New York 1973; 29–79
  • Kandel E., Schwartz J., Jessel T. Principles of Neuroscience. Elsevier, , New York 1991
  • Jami L. Golgi Tendon Organs in Mammalian Skeletal Muscle: Functional Properties and Central Actions. Physiol. Rev. 1992; 72: 623–666
  • Hunt C. C. Mammalian Muscle Spindle: Peripheral Mechanisms. Physiol. Rev. 1990; 70: 643–663
  • Sachs F., Sokabe M. Stretch-Activated Ion Channels and Membrane Mechanics. Neurosci. Res. Suppl. 1990; 12: S1–S4
  • Sachs F. Mechanical Transduction by Ion Channels: How Forces Reach the Channel. Soc. Gen. Physiol. Ser. 1997; 52: 209–218
  • Sachs F. Stretch-Sensitive Ion Channels: An Update. Soc. Gen. Physiol. Ser. 1992; 47: 241–260
  • Juusola M., French A. S. Recording from Cuticular Mechanoreceptors during Mechanical Stimulation. Pfluegers Arch. 1995; 431: 125–128
  • Hudspeth A. J., Lewis R. S. Kinetic Analysis of Voltage- and Ion-Dependent Conductances in Saccular Hair Cells of the Bull-Frog, Rana catesbeina. J. Physiol. (Lond.) 1988; 400: 237–274
  • Greenspan J. D. Nociceptors and the Peripheral Nervous System's Role in Pain. J. Hand. Ther. 1997; 10: 78–85
  • Davis K. D., Meyer R. A., Campbell J. N. Chemosensitivity and Sensitization of Nociceptive Afferents that Innervate the Hairy Skin of Monkey. J. Neurophysiol. 1993; 69: 1071–1081
  • Meyer R. A., Davis K. D., Cohen R. H., Treede R. D., Campbell J. N. Mechanically Insensitive Afferents (MIAs) in Cutaneous Nerves of Monkey. Brain Res. 1991; 561: 252–261
  • Handwerker H. O., Kilo S., Reeh P. W. Unresponsive Afferent Nerve Fibers in the Sural Nerve of the Rat. J. Physiol. (Lond.) 1991; 435: 229–242
  • Schaible H. G., Schmidt R. F. Time Course of Mechanosensitivity Changes in Articular Afferents during a Developing Experimental Arthritis. J. Neurophysiol. 1988; 60: 2180–2195
  • Marino A. A. Neurobiophysics. Encyclopedia of Applied Physics, G. L. Trigger. VCH Publishers, WeinheimGermany 1994; 297–322
  • Ballato A., Vig J. R. Piezoelectric Devices. Encyclopedia of Applied Physics, G. L. Trigg. VCH, , New York 1996; 129–169
  • Marino A. A., Soderholm S. C., Becker R. O. Origin of the Piezoelectric Effect in Bone. Calc. Tiss. Res. 1971; 8: 177–180
  • Sakmann B., Neher E. Single-Channel Recording. Plenum, , New York 1995
  • Pilla A. A., Nasser P. R., Kaufman J. J. Gap Junction Impedance, Tissue Dielectrics and Thermal Noise Limits for Electromagnetic Field Bioeffects. Bioelectrochem. Bioenerg. 1994; 35: 63–69
  • Biedler J. L., Roffler-Tarlov S., Schachner M., Freedman L. S. Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. Cancer Res. 1978; 38: 3751–3757

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.