42
Views
21
CrossRef citations to date
0
Altmetric
Original

Myosin Light Chain Phosphorylation Modification Depending on Magnetic Fields. I. Theoretical

Pages 55-74 | Published online: 07 Jul 2004

References

  • Adair R. K. Constraint on biological effects of extremely low frequency fields. Phys. Rev. A 1991; 43: 1038–1049
  • Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle MLCK. J. Biol. Chem. 1981; 256: 7501, [PUBMED], [INFOTRIEVE]
  • Adey W. R. Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric field. Functional Linkage in Biomolecular Systems, F. Schmitt, D. M. Schneider, D. M. Ctithers. Raven Press, New York 1975; pp. 325–342
  • Adey W. R. Model of cerebral cells as substrates for informational storage. Biosystems 1977; 8: 163–176, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Adey W. R. The sequence and energetics of cell membrane transducing coupling to intracellular enzyme systems. Bioelectrochemistry and Bioenergetics 1986; 15: 447–456, [CROSSREF], [CSA]
  • Adey W. R. The extracellular space and energetic hierarchies in electrochemical signaling between cells. Charge and Field Effects in Biosystems, M. J. Allen, S. F. Cleary, F. Howkridge. Plenum Press, New York 1989; pp. 263–290
  • Adey W. R., Sheppard A. S. Cell structure ionic phenomena in transmembrane signaling to intracellular enzyme systems. Mechanistic Approaches to Interactions of Electric and Magnetic Fields with Living Systems, M. Blank, E. Findl. Plenum Press, , NY 1987; 365–387
  • Asano M., Stull J. T. Myosin Phosphorylation in Calmodulin Antagonists and Cellular Physiology, H. Hidaka, D. J. Hartshorne. Acad. Press, Orlando 1985; 225–260
  • Babu Y. S., Sack J. S., Greenbough T. J., Bugg C. E., Means A. R., Cook W. L. Three-dimensional structure of calmodulin. Nature 1985; 315: 37–40, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Babu Y. S., Big C. E., Cook W. J. Structure of calmodulin refined at 2.2Δ. J. Mol. Biol. 1988; 204: 191–204, [PUBMED], [INFOTRIEVE]
  • Barany K., Ledrova R. F., Barany M. The phosphorylation of the 20000 Dalton myosin light chain in intact arterial muscle. Calmodulin Antagonists and Cellular Physiology. Acad. Press. 1985; 199–223
  • Bassett C. A. L. Therapeutic uses of electric and magnetic fields in orthopedics. Biological Effects of Electric and Magnetic Fields, D. Karpenter, S. Ayrapetyan. Academic Press, San Diego 1994; pp. 13–31
  • Bawin S. M., Kaczmarek L. K., Adey W. R. Effects of modulated VHF fields on the central nervous system. Ann. NY Acad. Sci. 1975; 247: 74–91, [PUBMED], [INFOTRIEVE]
  • Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields. Proc. Natl. Acad. Sci. USA 1976; 73: 1999–2003, [PUBMED], [INFOTRIEVE]
  • Blackman C. F., Benane S. G., Elder J. A., House D. E., Lampe J. A., Faulk J. M. Induction of calcium ion efflux from brain tissue by radiofrequency radiation: effect of simple number and modulation frequency on the power-density window. Bioelectromagnetics 1980a; 1: 35–43, [PUBMED], [INFOTRIEVE]
  • Blackman C. F., Benane S. G., Joines W. T., Hollis M. A., House D. E. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependence at 50 MHz RF radiation. Bioelectromagnetics 1980b; 1: 277–283, [PUBMED], [INFOTRIEVE]
  • Blackman C. F., Benane S. G., Kinney L. S., Joines W. T., House D. E. Effects of ELF fields on calcium efflux from brain tissue in vitro. Radiation Research 1982; 92: 510–520, [PUBMED], [INFOTRIEVE]
  • Blackman C. F., Benane S. G., House D. E., Joines W. T. Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux from brain tissue in vitro. Bioelectromagnetics 1985a; 6: 1–11, [PUBMED], [INFOTRIEVE]
  • Blackman C. F., Benane S. G., Rabinowitz J. R., House D. E., Joines W. T. A role for the magnetic field in the radiation-induced efflux of Ca-ions from brain tissue in vitro. Bioelectromagnetics 1985b; 6: 327–333, [PUBMED], [INFOTRIEVE]
  • Blackman C. F., Benane S. G., House D. E., Elliot D. J. Importance of alignment between local DC magnetic field and an oscillating magnetic field in response of brain tissue in vivo and in vitro. Bioelectromagnetics 1990; 11: 159–167, [PUBMED], [INFOTRIEVE]
  • Blanchard J. P., Blackman C. F. Clarification and amplification of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 1994; 15: 217–238, [PUBMED], [INFOTRIEVE], [CSA]
  • Blumenthal D. K., Stull J. T. Activation of skeletal muscle myosin light chain kinase by Ca2+ and calmodulin. Biochemistry 1980; 19: 5608–5614, [PUBMED], [INFOTRIEVE]
  • Bowman B. W., Peterson J. A., Stull J. T. Pre-steady state kinetics of the activation of rabbit skeletal muscle myosin light chain kinase by Ca2+/calmodulin. J. Bio. Chem. 1992; 267: 5346–5354
  • Bull A. W., Cherng S, Jenrow K. A., Liboff A. R. Weak magnetostatic fields alter calmodulin-dependent cyclic nucleotide phosphodiesterase activity. Electricity and Magnetism in Biology and Medicine, M. Blank. San Francisco Press. 1993; 319–322
  • Byus V., Lundak R. L., Fletcher R. M., Adey W. R. Alterations in protein kinase activity following exposure of cultured lymphocytes to modulated microwave fields. Bioelectromagnetics 1984; 5: 34–51
  • Cadossi R., Cecchrelli G. B., Emilia G., Torelli G., Ferrari S. The effect of low frequency pulsing electromagnetic fields on the response of human lymphocytes to lectins. Bioelectrochem. Bioenergetics 1988; 19: 315–322, [CROSSREF]
  • Cain C. D., Luben R. A. Pulsed electromagnetic field effects on PTH-stimulated cAMP accumulation and bone resorption in mouse calvaria. L. E. Anderson, B. J. Kelman, R. J. Weige. Pacific Northwest Laboratory, Wash 1987; 269–277
  • Chafoules J. C., Bolton W. E., Hidaka H., Boyd A. E., Means H. R. Calmodulin involvement in regulation of cell-cycle progression. Cell 1982; 28: 41–50, [CROSSREF]
  • Chiabrera A., Bianco B., Caratozzolo F., Gianetti G., Grattarola M., Viviani R. Electric and magnetic field effects on ligand binding to the cell membrane. Interactions Between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum Press. 1985; 253–280
  • Chiabrera A., Bianco B., Kaufman J. J., Pilla A. A. Quantum analysis of ion binding kinetics in electromagnetic bioeffects. Electromagneties in Medicine and Biology, C. T. Brighton, S. R. Pollack. San Francisco Press Inc. 1991; p. 27–31
  • Chiabrera A., Bianco B., Moggia E., Tommasi T. Interaction mechanism between electromagnetic fields and ion absorption: endogenous forces and collision frequency. Bioelectrochem. Bioenerg. 1994; 35: 33–37, [CROSSREF]
  • Collacicco G., Pilla A. A. Electromagnetic modulation of biological processes: influence of culture media and significance of methodology in the Ca-uptake of embrional chick tibia in vitro. Calcif. Tissue Research 1984; 36: 167–174
  • Cooke R. Actomyosin interaction in striated muscle. Physiol. Rev. 1997; 77: 671–697, [PUBMED], [INFOTRIEVE], [CSA]
  • Coulton L. A., Barker A. T., Van Lierop J. E., Walsh M. P. The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain. Bioelectromagnetics 2000; 21: 189–196, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Diffee G. M., Greaser M. L., Reinach F. C., Moss R. L. Effects of a non-divalent cation binding of myosin regulatory light chain on tension generation in skinned skeletal muscles. Biophys. J. 1995; 68: 1443–1452, [PUBMED], [INFOTRIEVE], [CSA]
  • Dutta S. K., Subramoniam A., Ghosh B., Parshad R. Microwave radiation-induced calcium efflux from brain tissue, in vitro. Bioelectromagnetics 1984; 6: 1–12
  • Ferenczi M. A., He Z. H., Chillingworth R. K., Brune M., Corrie J. E., Tretham D. R., Web M. R. A new method for the time-resolved measurement of phosphate release in permeabilized muscle fibers. Biophys. J. 1995; 68(Suppl)191s–193s, [PUBMED], [INFOTRIEVE], [CSA]
  • Fisher A. J., Smith C. A., Thoden J., Smith R., Suton K., Holden H. M., Rayment I. Structural studies of myosin: nucleotide complexes: a revised model for the molecular basis of muscle contractions. Biophys. J. 1995; 68: 19S–28S, [PUBMED], [INFOTRIEVE], [CSA]
  • Fitzsimmons R. J., Farley J., Adey W. R., Baylink D. J. Embryonic bone matrix formations increase after exposure to a low-amplitude capacitively coupled electric field. in vitro. BBA 1986; 882: 51–56
  • Gasmi-Seabrook G. M., Howarth J. W., Finley N., Abus-amhadnen E., Gaponenko V., Brito R. M., Solaro R. J., Rosevear P. R. Solution structures of the C-terminal domain of cardiac troponin C free and bound to the N-terminal domain of cardiac troponin. Biochemistry 1999; 38: 8313–8322, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Goodman R., Wei L. X., Xu J. C., Henderson A. Exposure of human cells to low frequency electromagnetic fields results in quantitative changes in transcripts. BBA 1989; 1009: 216–220, [PUBMED], [INFOTRIEVE]
  • Hazelton B., Tupper J. Calcium transport and exchange in mouse 3T3 and SV40-3T3 cells. J. Cell Biol. 1979; 81: 538–542, [CROSSREF]
  • Hendee S. P., Faour F. A., Christenson D. A., Patrick B., Durney C. H., Blumenthal D. K. The effect of weak extremely low frequency magnetic fields on calcium/calmodulin interactions. Biophys. J. 1996; 70: 2915–2923, [PUBMED], [INFOTRIEVE], [CSA]
  • Huxley A. F. Muscle structure and theory of contraction. Progr. Biophys. Biophys. Chem. 1957; 7: 255–318
  • Huxley A. F. The mechanism of muscle contraction. Science 1969; 164: 1356–1366, [PUBMED], [INFOTRIEVE]
  • Huxley A. F., Simmons R. M. Rapid “give” and the tension “shoulder” in the relaxation of frog muscle fibers. J. Physiol. (London) 1970; 210: 12P–22P
  • Heidom D. B., Seeger P. A., Rokop S. E., Blumenthal D. E., Means A. R., Crespi H., Trewhella J. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase. Biochemistry 1989; 28: 6757
  • Ikura M., Bax A. Isotope-filtered 2D NMR of a protein–peptide complex: study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. J. Amer. Chem. Soc. 1992; 114: 2433–2440
  • Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 1992; 256: 632–638, [PUBMED], [INFOTRIEVE]
  • Jolley W. B., Hinshaw D. B., Knierim K., Hinshaw D. B. Electromagnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics 1983; 4: 103–107, [PUBMED], [INFOTRIEVE]
  • Kaczmarek L. K. Frequency sensitive biochemical reactions. Biophys. Chem. 1976; 4: 249–252, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kataoka M., Head J. F., Seaton B. A., Engelman D. M. Mellitin binding causes a large calcium-dependent conformational change in calmodulin. Proc. Natl. Acad. Sci. USA 1989; 86: 6944, [PUBMED], [INFOTRIEVE], [CSA]
  • Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Ann. Rev. Biochem. 1980; 49: 489–515, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Koretz J. F., Fredericksen D. W. Effects of phosphorylation on the aggregation behavior of porcine aortic muscular myosin. Biophys. J. 1981; 33: 235a
  • Kretsinger R. H. Annual. Rev. Biochem. 1976; 45: 239–266, [CROSSREF]
  • Kretsinger R. H., Barry C. D. The predicted structure of calmodulin-binding component of troponin. BBA 1975; 405: 40–52, [PUBMED], [INFOTRIEVE]
  • Kretsinger R. H., Rudnick S. E., Weissman L. J. Crystal structure of calmodulin. J. Inorg. Biochem. 1986; 28: 289–302, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Landesberg A., Sideman S. Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 1994; 266: H1260–H1271
  • Lednev V. V. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 1991; 12: 71–75, [PUBMED], [INFOTRIEVE]
  • Lednev V. V. Interference with the vibrational energy sublevels of ions bound in calcium-binding proteins as the basis for the interaction of weak magnetic fields with biological systems. On the Nature of Electromagnetic Field Interactions with Biological Systems, A. Frey. RG Landes Inc., Austin, TX 1994; 59–72
  • Liboff A. R. Cyclotron resonance in membrane transport. Interactions between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum Press. 1985; 281–296
  • Liboff A. R. The electromagnetic field as a biological variable. On the Nature of Electromagnetic Field Interactions with Biological Systems, A. Frey. RG Landes Inc., Austin, TX 1994; 73–81
  • Liboff A. R., Williams T., Strong D., Wistar R. Time-varying magnetic fields effect on DNA synthesis. Science 1984; 223: 818–820, [PUBMED], [INFOTRIEVE]
  • Liboff A. R., Cherng S., Jenrow K. A., Bull A. Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 µT magnetostatic fields. Bioelectromagnetics 2003; 24: 32–38, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Liboff A. R., McLeod B. R. Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 1988; 9: 39–51, [PUBMED], [INFOTRIEVE]
  • Liburdy R. P., Magin R. L. Microwave-stimulated drug release from liposomes. Rad. Res. 1985; 103: 266–273
  • Luben R. A., Cain C. D., Chen M. C. Y., Rosen D. M., Adey W. R. Effects of electromagnetic stimuli on bone and bone cells in vitro. Inhibition of responses to parathyroid hormone by low energy, low frequency fields. Proc. Natl. Acad. Sci. USA 1982; 79: 4180–4184, [PUBMED], [INFOTRIEVE], [CSA]
  • Luben R. A., Cain C. Use of bone cell hormone responses to investigate bioelectromagnetic effects on membranes in vitro. Nonlinear Electrodynamics in Biological Systems, W. R. Adey, A. F. Lawrence. Plenum Press, , NY 1984; 23–33
  • Lyle D. B., Schester P., Adey W. R., Lundak R. L. Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 1983; 4: 281–292, [PUBMED], [INFOTRIEVE]
  • Maita T., Chen J. I., Matsuda G. Amino acid sequence of the 20000-molecular weight light chain of chicken gizzard muscle myosin. Eur. J. Biochem. 1981; 117: 417, [PUBMED], [INFOTRIEVE]
  • Markov M. S. Informational character of magnetic field action on biological systems. Biophysical and Biochemical Information Transfer in Recognition, K. Jensen, Yu. Vassileva. Plenum Press, , N.Y. 1979; 496–500
  • Markov M. S. Influence of constant magnetic field on biological systems. Charge and Field Effects in Biological Systems, M. J. Allen, P. N. R. Usherwood. Abacus Press, KentEngland 1984; pp. 319–329
  • Markov M. S. Effect of radiation on biological systems. Charge and Field Effects in Biosystems, M. J. Allen, S. F. Cleary, F. Howkridge. Plenum Press, New York 1989; pp. 241–250
  • Markov M. S. Electromagnetic field influence on membranes. Interfacial Phenomena in Biological System, M. Bender. Marcel Dekker. 1991; pp. 171–192
  • Markov M. S. Biological effects of extremely low frequency magnetic fields. Biomagnetic Stimulation, S. Ueno. Plenum Press, New York 1994; 91–103
  • Markov M. S. (2002) How to go to magnetic field therapy?. International Workshop of Biological Effects of Electromagnetic Fields, RhodesGreece, Oct., 7–112002, pp. 5–15, ISBN #960-86733-3-X
  • Markov M., Pilla A A. Modulation of cell-free myosin light chain phosphorylation with weak low frequency and static magnetic fields. On the Nature of Electromagnetic Field Interactions with Biological Systems, A. H. Frey. R. G. Landes Co., Austin, TX 1994; 127–141
  • Markov M. S., Pilla A. A. Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence. Bioelectrochemistry and Bioenergetics 1997; 43: 233–238, [CROSSREF], [CSA]
  • Markov M. S., Ryaby J. T., Wang S., Pilla A. A. (1992) Modulation of myosin phosphorylation rates by weak (near ambient) DC magnetic fields. Proceedings of 18th Annual Northeast Bioengineering Conference, Kingston, RI, March, 1992. IEEE, New York, pp. 63–64
  • Markov M. S., Todorov N. G. Electromagnetic field stimulation of some physiological properties. Studia. Biophysica. 1984; 99: 151–156
  • Markov M. S., Todorov S. I., Ratcheva M. R. Biomagnetic effects of the constant magnetic field action on water and physiological activity. Physical Bases of Biological Information Transfer, K. Jensen, Vassileva Yu., 1976; pp. 441–445
  • Matsushima N., Izumi Y., Yoshino H., Ueki T., Miyakem Y. Binding of Ca2+ and mactroparan to calmodulin induces changes in the tertiary structure. J. Biochem. (Tokyo) 1989; 105: 883, [CSA]
  • Maunet J. F., Klee C. B., Beckingham K. Ca2+ binding and conformational change in two series of point mutation to the individual Ca2+-binding sites of calmodulin. J. Biol. Chem. 1992; 267: 5286–5295
  • McLeod B. R., Liboff A. R. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics 1986; 7: 177–189, [PUBMED], [INFOTRIEVE]
  • Mitsui T. Induced potential model of muscular contraction mechanism and molecular structure of myosin. Adv. Biophys. 1999; 36: 107–158, [PUBMED], [INFOTRIEVE], [CSA]
  • Nindl G., Johnson M. T., Hughes E. F., Markov M. S. Therapeutic electromagnetic field effects on normal and activated jurkat cells. International Workshop of Biological Effects of Electromagnetic Fields, RhodesGreece, Oct., 7–112002, pp. 167–173, ISBN #960-86733-3-X
  • Nishizuka Y. Calcium, phospholipids and transmembrane signaling. Phil. Trans. Roy. Soc. London 1983; B302: 101–112
  • O’Neil K. T., DeGrado W. F. The interaction of calmodulin with fluorescent and photoreactive peptides. Proteins 1988; 6: 284, [CSA]
  • Patel N., Poo M. Orientation of neurite growth by external electric fields. J. Neurosci. 1982; 2: 483–496, [PUBMED], [INFOTRIEVE]
  • Persechini A., Kretsinger R. Toward a model of the calmodulin-myosin light chain kinase complex: implications for calmodulin function. J. Cardiovasc. Phannacol. 1988; 12(S5)1
  • Pilla A. A., Muehsam D. J., Markov M. S. A dynamic system/Larmor Precession Model for weak magnetic field bioeffects: ion binding and orientation of bound water molecules. Bioelectrochemistry and Bioenergetics 1997; 43: 239–249, [CROSSREF]
  • Pilla A. A., Musham D. J., Markov M. S., Sisken B. F. EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. Bioelectrochemistry and Bioenergetics 1999; 48: 27–34, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Rosch P. J., Markov M. S. Bioelectromagnetic Medicine. Marcel Dekker Inc., New York 2004; 850
  • Semm P. Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp. Biol. Physiol. 1983; 76A: 683–692, [CSA]
  • Shuvalova L. A., Ostrovskaya M. V., Sosunov E. A., Lednev V. V. Weak magnetic fields tuned to the parametric resonance condition change the rate of calcium–calmodulin dependent myosin phosphorylation. Reports of the Academy of Sciences, USSR 1991; 317: 227–231, (In Russian)[CSA]
  • Sisken B. F. The role of calcium ions in electrically stimulated neurite formation in vitro. Mechanistic Approaches to the Interaction of Electric and Electromagnetic Fields with Living Systems, M. Blank, E. Findl. Plenum Pub. Corp. 1987; pp. 417–430
  • Smith S. D., McLeod B. R., Liboff A. R., Cooksey K. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 1987; 8: 215–227, [PUBMED], [INFOTRIEVE]
  • Sweeney H. L., Stull J. T. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 1990; 87: 414–418, [PUBMED], [INFOTRIEVE], [CSA]
  • Takahashi K., Keneko I., Date M., Fukada E. Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experentia 1986; 42: 185–186, [CSA]
  • Taylor D. A., Sack J. S., Maune J. F., Beckingham K., Quiocho F. A. Structure of recombinant calmodulin from Drosophyla melanogaster refined at 2.2Δ resolution. J. Biol. Chem. 1991; 266: 21375, [PUBMED], [INFOTRIEVE]
  • Thomas J. R., Schrot J., Liboff A. R. Low intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 1986; 7: 349–357, [PUBMED], [INFOTRIEVE]
  • Todorov N. Magnetotherpay. Meditzina i Physcultura Publishing House, Sofia 1982; 106
  • Ukolova M. A., Kvakina E. B., Garkavi L. H. Stages of magnetic field—problems of action of magnetic fields on biological systems. Nmauka, Moscow 1975; 1: 57–71, (In Russian)
  • Walsch M., Hinkins S., Dabrowska R., Hartshorne D. J. Smooth muscle myosin light chain kinase. Methods in Enzymology 1983; 99: 279–289
  • Yagi K., Yazawa M., Kakiushi S., Ohshima M., Uenishi K. Identification of an activator protein for myosin light chain kinase as the Ca2+-dependent modulator protein. J. Biol. Chem. 1978; 253: 1338–1340, [PUBMED], [INFOTRIEVE]
  • Yazawa M., Ikura M., Hikichi K., Ying L. K., Yagi K. Communication between two globular domains of calmodulin in the presence of mastopan fragments. J. Biol. Chem. 1987; 262: 10951–10954, [PUBMED], [INFOTRIEVE]
  • Yoshida M., Minowa O., Yagi K. Divalent cation binding to wheat germ calmodulin. J. Biochem. (Tokyo). 1983; 94: 1925–1933, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.