138
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Defining the Roles of Collagen and Collagen‐Like Proteins Within the Proteome

, &
Pages 2225-2254 | Received 08 Jan 2003, Accepted 27 Mar 2003, Published online: 06 Feb 2007

References

  • Myllyharju , J. and Kivirikko , K. I. 2001 . Collagen and collagen‐related diseases . Ann. Med. , 33 : 7 – 21 .
  • Hashimoto , T. , Wakabayashi , T. , Watanabe , A. , Kowa , H. , Hosoda , R. , Nakamura , A. , Kanazawa , I. , Arai , T. , Takio , K. , Mann , D. M.A. and Iwatsubo , T. 2002 . CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC‐P/collagen type XXV . EMBO J. , 21 : 1524 – 1534 .
  • Cole , W. G. 1994 . Collagen genes: mutations affecting collagen structure and expression . Prog. Nucl. Acid Res. Mol. Biol. , 47 : 29 – 80 .
  • Baum , J. and Brodsky , B. 1999 . Folding of peptide models of collagen and misfolding in disease . Curr. Opin. Struct. Biol. , 9 : 122 – 128 .
  • Prockop , D. J. and Kivirikko , K. I. 1995 . Collagens: molecular biology, diseases, and potentials for therapy . Ann. Rev. Biochem. , 64 : 403 – 434 .
  • Olsen , B. R. and Ninomiya , Y. 1999 . “ Collagens: overview of the family ” . In Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins , 2nd Edited by: Kreis , T. and Vale , R. 380 – 383 . Oxford , , U.K. : Oxford University Press .
  • Liu , H. , In , D. and Yates , J. R. III. 2002 . Multidimensional separations for protein/peptide analysis in the post‐genomic era . BioTechniques , 32 : 898 – 911 .
  • Brodsky , B. and Shah , N. K. 1995 . The triple‐helix motif in proteins . FASEB J. , 9 : 1537 – 1546 .
  • Michaud , G. A. and Snyder , M. 2002 . Proteomic approaches for the global analysis of proteins . BioTechniques , 33 : 1308 – 1316 .
  • Fukuda , K. , Hori , H. , Utani , A. , Burbelo , P. D. and Yamada , Y. 1997 . Formation of recombinant triple‐helical [α1(IV)]2α2(IV) collagen molecules in CHO cells . Biochem. Biophys. Res. Comm. , 231 : 178 – 182 .
  • Hayashi , T. and Nagai , Y. 1980 . Anomalous behavior of collagen peptides on sodium dodecyl sulfate‐polyacrylamide gel electrophoresis is due to the low content of hydrophobic amino acid residues . J. Biochem. , 87 : 803 – 808 .
  • Kuivaniemi , H. , Tromp , G. and Prockop , D. J. 1997 . Mutations in fibrillar collagens (types I, II, III, and XI), fibril‐associated collagen (type IX), and network‐forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels . Hum. Mutat. , 9 : 300 – 315 .
  • Di Lullo , G. A. , Sweeney , S. M. , Körkkö , J. , Ala‐Kokko , L. and San Antonio , J. D. 2002 . Mapping the ligand‐binding sites and disease‐associated mutations on the most abundant protein in the human, type I collagen . J. Biol. Chem. , 277 : 4223 – 4231 .
  • Cohen , M. M. Jr. 2002 . Some chondrodysplasias with short limbs: Molecular perspectives . Am. J. Med. Gen. , 112 : 304 – 313 .
  • Bogaert , R. , Tiller , G. E. , Weis , M. A. , Gruber , H. E. , Rimoin , D. L. , Cohn , D. H. and Eyre , D. R. 1992 . An amino acid substitution (Gly853Glu) in the collagen a1(II) chain produces hypochondrogenesis . J. Biol. Chem. , 267 : 22522 – 22526 .
  • Horton , W. A. , Machado , M. A. , Ellard , J. , Campbell , D. , Bartley , J. , Ramirez , F. , Vitale , E. and Lee , B. 1992 . Characterization of a type II collagen gene (COL2A1) mutation identified in cultured chondrocytes from human hypochondrogenesis . Proc. Natl. Acad. Sci. USA , 89 : 4583 – 4587 .
  • Vissing , H. , D'Alessio , M. , Lee , B. , Ramirez , F. , Godfrey , M. and Hollister , D. W. 1989 . Glycine to serine substitution in the triple helical domain of pro‐α1(II) collagen results in a lethal perinatal form of short‐limbed dwarfism . J. Biol. Chem. , 264 : 18265 – 18267 .
  • Nelson , F. , Dahlberg , L. , Laverty , S. , Reiner , A. , Pidoux , I. , Ionescu , M. , Fraser , G. L. , Brooks , E. , Tanzer , M. L. , Rosenberg , L. C. , Dieppe , P. and Poole , A. R. 1998 . Evidence for altered synthesis of type II collagen in patients with osteoarthritis . J. Clin. Invest. , 102 : 2115 – 2125 .
  • Garnero , P. , Ayral , X. , Rousseau , J.‐C. , Christgau , S. , Sandell , L. J. , Dougados , M. and Delmas , P. D. 2002 . Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis . Arthritis Rheumat. , 46 : 2613 – 2624 .
  • Vissing , H. , D'Alessio , M. , Lee , B. , Ramirez , F. , Byers , P. H. , Steinmann , B. and Superti‐Furga , A. 1991 . Multiexon deletion in the procollagen III gene is associated with mild Ehlers‐Danlos syndrome type IV . J. Biol. Chem. , 266 : 5244 – 5248 .
  • De Paepe , A. , Nuytinck , L. , Hausser , I. , Anton‐Lamprecht , I. and Naeyaert , J. M. 1997 . Mutations in the COL5A1 gene are causal in the Ehlers‐Danlos syndromes I and II . Am. J. Hum. Genet. , 60 : 547 – 554 .
  • Nuytinck , L. , Freund , M. , Lagae , L. , Pierard , G. E. , Hermanns‐Le , T. and De Paepe , A. 2000 . Classic Ehlers‐Danlos syndrome caused by a mutation in type I collagen . Am. J. Hum. Genet. , 66 : 1398 – 1402 .
  • Clark , E. A. , Golub , T. R. , Lander , E. S. and Hynes , R. O. 2000 . Genomic analysis of metastasis reveals an essential role for RhoC . Nature , 406 : 532 – 535 .
  • O'Reilly , M. S. , Boehm , T. , Shing , Y. , Fukai , N. , Vasios , G. , Lane , W. S. , Flynn , E. , Birkhead , J. R. , Olsen , B. R. and Folkman , J. 1997 . Endostatin: an endogenous inhibitor of angiogenesis and tumor growth . Cell , 88 : 277 – 285 .
  • Colorado , P. C. , Torre , A. , Kamphaus , G. , Maeshima , Y. , Hopfer , H. , Takahashi , K. , Volk , R. , Zamborsky , E. D. , Herman , S. , Sarkar , P. K. , Ericksen , M. B. , Dhanabal , M. , Simons , M. , Post , M. , Kufe , D. W. , Weichselbaum , R. R. , Sukhatme , V. and Kalluri , R. 2000 . Anti‐angiogenic cues from vascular basement membrane collagen . Cancer Res. , 60 : 2520 – 2526 .
  • Petitclerc , E. , Boutaud , A. , Prestayko , A. , Xu , J. , Sado , Y. , Ninomiya , Y. , Sarras , J. M.P. , Hudson , B. G. and Brooks , P. C. 2000 . New functions for non‐collagenous domains of human collagen type IV . J. Biol. Chem. , 275 : 8051 – 8061 .
  • Maeshima , Y. , Sudhakar , A. , Lively , J. C. , Ueki , K. , Kharbanda , S. , Kahn , C. R. , Sonenberg , N. , Hynes , R. O. and Kalluri , R. 2002 . Tumstatin, an endothelial cell‐specific inhibitor of protein synthesis . Science , 295 : 140 – 143 .
  • Kim , Y.‐M. , Hwang , S. , Kim , Y.‐M. , Pyun , B.‐J. , Kim , T.‐Y. , Lee , S.‐T. , Gho , Y. S. and Kwon , Y.‐G. 2002 . Endostatin blocks vascular endothelial growth factor‐mediated signaling via direct interaction with KDR/Flk‐1 . J. Biol. Chem. , 277 : 27872 – 27879 .
  • Ricard‐Blum , S. , Dublet , B. and van der Rest , M. 2000 . Unconventional collagens: Types VI, VII, VIII, IX, X, XIV, XVI and XIX Oxford , , U.K. : Oxford University Press .
  • Fields , C. G. , Lovdahl , C. M. , Miles , A. J. , Matthias‐Hagen , V. L. and Fields , G. B. 1993 . Solid‐phase synthesis and stability of triple‐helical peptides incorporating native collagen sequences . Biopolymers , 33 : 1695 – 1707 .
  • Fields , C. G. , Mickelson , D. J. , Drake , S. L. , McCarthy , J. B. and Fields , G. B. 1993 . Melanoma cell adhesion and spreading activities of a synthetic 124‐residue triple‐helical “mini‐collagen” . J. Biol. Chem. , 268 : 14153 – 14160 .
  • Grab , B. , Miles , A. J. , Furcht , L. T. and Fields , G. B. 1996 . Promotion of fibroblast adhesion by triple‐helical peptide models of type I collagen‐derived sequences . J. Biol. Chem. , 271 : 12234 – 12240 .
  • Thakur , S. , Vadolas , D. , Germann , H. P. and Heidemann , E. 1986 . Influence of different tripeptides on the stability of the collagen triple helix II: an experimental approach with appropriate variations of a trimer model oligotripeptide . Biopolymers , 25 : 1081 – 1086 .
  • Germann , H. P. and Heidermann , E. 1988 . A synthetic model of collagen: an experimental investigation of the triple‐helix stability . Biopolymers , 27 : 157 – 163 .
  • Fields , G. B. 1995 . The collagen triple‐helix: correlation of conformation with biological activities . Connect. Tissue Res. , 31 : 235 – 243 .
  • Tanaka , T. , Nishikawa , A. , Tanaka , Y. , Nakamura , H. , Kodama , T. , Imanishi , T. and Doi , T. 1996 . Synthetic collagen‐like domain derived from the macrophage scavenger receptor binds acetylated low‐density lipoprotein in vitro . Protein Eng. , 9 : 307 – 313 .
  • Hojo , H. , Akamatsu , Y. , Yamauchi , K. , Kinoshita , M. , Miki , S. and Nakamura , Y. 1997 . Synthesis and structural characterization of triple‐helical peptides which mimic the ligand binding site of the human macrophage scavenger receptor . Tetrahedron , 53 : 14263 – 14274 .
  • Tanaka , Y. , Suzuki , K. and Tanaka , T. 1998 . Synthesis and stabilization of amino and carboxy terminal constrained collagenous peptides . J. Peptide Res. , 51 : 413 – 419 .
  • Ottl , J. , Battistuta , R. , Pieper , M. , Tschesche , H. , Bode , W. , Kühn , K. and Moroder , L. 1996 . Design and synthesis of heterotrimeric collagen peptides with a built‐in cystine‐knot . FEBS Lett. , 398 : 31 – 36 .
  • Ottl , J. , Gabriel , D. , Murphy , G. , Knäuper , V. , Tominaga , Y. , Nagase , H. , Kröger , M. , Tschesche , H. , Bode , W. and Moroder , L. 2000 . Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases . Chem. Biol. , 7 : 119 – 132 .
  • Goodman , M. , Feng , Y. , Melacini , G. and Taulane , J. P. 1996 . A template‐induced incipient collagen‐like triple‐helical structure . J. Am. Chem. Soc. , 118 : 5156 – 5157 .
  • Goodman , M. , Melacini , G. and Feng , Y. 1996 . Collagen‐like triple helices incorporating peptoid residues . J. Am. Chem. Soc. , 118 : 10928 – 10929 .
  • Feng , Y. , Melacini , G. , Taulane , J. P. and Goodman , M. 1996 . Collagen‐based structures containing the peptoid residue N‐isobutylglycine (Nleu): synthesis and biophysical studies of Gly‐Pro‐Nleu sequences by circular dichroism, ultraviolet absorbance, and optical rotation . Biopolymers , 39 : 859 – 872 .
  • Feng , Y. , Melacini , G. and Goodman , M. 1997 . Collagen‐based structures containing the peptoid residue N‐isobutylglycine (Nleu): synthesis and biophysical studies of Gly‐Nleu‐Pro sequences by circular dichroism and optical rotation . Biochemistry , 36 : 8716 – 8724 .
  • Rump , E. T. , Rijkers , D. T.S. , Hilbers , H. W. , de Groot , P. G. and Liskamp , R. M.J. 2002 . Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro‐Hyp‐Gly repeats . Chem. Eur. J. , 8 : 4613 – 4621 .
  • Kwak , J. , De Capua , A. , Locardi , E. and Goodman , M. 2002 . TREN (Tris (2‐aminoethyl)amine): an effective scaffold for the assembly of triple helical collagen mimetic structures . J. Am. Chem. Soc. , 124 : 14085 – 14091 .
  • Yu , Y.‐C. , Berndt , P. , Tirrell , M. and Fields , G. B. 1996 . Self‐assembling amphiphiles for construction of protein molecular architecture . J. Am. Chem. Soc. , 118 : 12515 – 12520 .
  • Yu , Y.‐C. , Tirrell , M. and Fields , G. B. 1998 . Minimal lipidation stabilizes protein‐like molecular architecture . J. Am. Chem. Soc. , 120 : 9979 – 9987 .
  • Yu , Y.‐C. , Roontga , V. , Daragan , V. A. , Mayo , K. H. , Tirrell , M. and Fields , G. B. 1999 . Structure and dynamics of peptide‐amphiphiles incorporating triple‐helical proteinlike molecular architecture . Biochemistry , 38 : 1659 – 1668 .
  • Fields , G. B. , Lauer , J. L. , Dori , Y. , Forns , P. , Yu , Y.‐C. and Tirrell , M. 1998 . Proteinlike molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction . Biopolymers , 47 : 143 – 151 .
  • Fan , P. , Li , M. H. , Brodsky , B. and Baum , J. 1993 . Backbone dynamics of (Pro‐Hyp‐Gly)10 and a designed collagen‐like triple‐helical peptide by 15N NMR relaxation and hydrogen‐exchange measurements . Biochemistry , 32 : 13299 – 13309 .
  • Paterlini , M. G. , Némethy , G. and Scheraga , H. A. 1995 . The energy of formation of internal loops in triple‐helical collagen polypeptides . Biopolymers , 35 : 607 – 619 .
  • Malkar , N. B. , Lauer‐Fields , J. L. , Borgia , J. A. and Fields , G. B. 2002 . Modulation of triple‐helical stability and subsequent melanoma cellular responses by single‐site substitution of fluoroproline derivatives . Biochemistry , 41 : 6054 – 6064 .
  • Fields , G. B. 1991 . A model for interstitial collagen catabolism by mammalian collagenases . J. Theor. Biol. , 153 : 585 – 602 .
  • Saccá , B. , Sinner , E.‐K. , Kaiser , J. , Lübken , C. , Eble , J. A. and Moroder , L. 2002 . Binding and docking of synthetic heterotrimeric collagen type IV peptides with α1β1 integrin . ChemBioChem , 9 : 904 – 907 .
  • Long , C. G. , Li , M. H. , Baum , J. and Brodsky , B. 1992 . Nuclear magnetic resonance and circular dichroism studies of a triple‐helical peptide with a glycine substitution . J. Mol. Biol. , 225 : 1 – 4 .
  • Brodsky , B. , Li , N. H. , Long , C. G. , Apigo , J. and Baum , J. 1992 . NMR and CD studies of triple‐helical peptides . Biopolymers , 32 : 447 – 451 .
  • Long , C. G. , Braswell , E. , Zhu , D. , Apigo , J. , Baum , J. and Brodsky , B. 1993 . Characterization of collagen‐like peptides containing interruptions in the repeating Gly‐X‐Y sequence . Biochemistry , 32 : 11688 – 11695 .
  • Liu , X. , Siegel , D. L. , Fan , P. , Brodsky , B. and Baum , J. 1996 . Direct NMR measurement of the folding kinetics of a trimeric peptide . Biochemistry , 35 : 4306 – 4313 .
  • Liu , X. , Kim , S. , Dai , Q.‐H. , Brodsky , B. and Baum , J. 1998 . Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease . Biochemistry , 37 : 15528 – 15533 .
  • Buevich , A. V. , Dai , Q.‐H. , Liu , X. , Brodsky , B. and Baum , J. 2000 . Site‐specific NMR monitoring of cis–trans isomerization in the folding of the proline‐rich collagen triple helix . Biochemistry , 39 : 4299 – 4308 .
  • Bhate , M. , Wang , X. , Baum , J. and Brodsky , B. 2002 . Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide . Biochemistry , 41 : 6539 – 6547 .
  • Bella , J. , Eaton , M. , Brodsky , B. and Berman , H. M. 1994 . Crystal and molecular structure of a collagen‐like peptide at 1.9 Å resolution . Science , 266 : 75 – 81 .
  • Bella , J. , Brodsky , B. and Berman , H. M. 1996 . Disrupted collagen architecture in the crystal structure of a triple‐helical peptide with a Gly→Ala substitution . Connect. Tissue Res. , 35 : 401 – 406 .
  • Yang , W. , Battineni , M. L. and Brodsky , B. 1997 . Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen‐like peptides . Biochemistry , 36 : 6930 – 6935 .
  • Beck , K. , Chan , V. C. , Shenoy , N. , Kirkpatrick , A. , Ramshaw , J. A.M. and Brodsky , B. 2000 . Destabilization of osteogenesis imperfecta collagen‐like model peptides correlates with the identity of the residue replacing glycine . Proc. Natl. Acad. Sci. USA , 97 : 4273 – 4278 .
  • Miles , A. J. , Skubitz , A. P.N. , Furcht , L. T. and Fields , G. B. 1994 . Promotion of cell adhesion by single‐stranded and triple‐helical peptide models of basement membrane collagen α1(IV)531–543: evidence for conformationally dependent and corformationally independent type IV collagen cell adhesion sites . J. Biol. Chem. , 269 : 30939 – 30945 .
  • Santoro , S. A. , Zutter , M. M. , Wu , J. E. , Staatz , W. D. , Saelman , E. U.M. and Keely , P. J. 1994 . Analysis of collagen receptors . Meth. Enzymol. , 245 : 147 – 183 .
  • Miles , A. J. , Knutson , J. R. , Skubitz , A. P.N. , Furcht , L. T. , McCarthy , J. B. and Fields , G. B. 1995 . A peptide model of basement membrane collagen α1(IV)531–543 binds the α3β1 integrin . J. Biol. Chem. , 270 : 29047 – 29050 .
  • Morton , L. F. , Peachey , A. R. , Knight , C. G. , Farndale , R. W. and Barnes , M. J. 1997 . The platelet reactivity of synthetic peptides based on the collagen III fragment α1(III)CB4 . J. Biol. Chem. , 272 : 11044 – 11048 .
  • Li , C. , McCarthy , J. B. , Furcht , L. T. and Fields , G. B. 1997 . An all‐D amino acid peptide model of a1(IV)531–543 from type IV collagen binds the a3b1 integrin and mediates tumor cell adhesion, spreading, and motility . Biochemistry , 36 : 15404 – 15410 .
  • Lauer , J. L. , Gendron , C. M. and Fields , G. B. 1998 . Effect of ligand conformation on melanoma cell a3b1 integrin‐mediated signal transduction events: implications for a collagen structural modulation mechanism of tumor cell invasion . Biochemistry , 37 : 5279 – 5287 .
  • Knight , C. G. , Morton , L. F. , Onley , D. J. , Peachey , A. R. , Messent , A. J. , Smethurst , P. A. , Tuckwell , D. S. , Farndale , R. W. and Barnes , M. J. 1998 . Identification in collagen type I of an integrin α2β1‐binding site containing an essential GER sequence . J. Biol. Chem. , 273 : 33287 – 33294 .
  • Verkleij , M. W. , Ijsseldijk , M. J.W. , Heijnen‐Snyder , G. J. , Huizinga , E. G. , Morton , L. F. , Knight , C. G. , Sixma , J. J. , de Groot , P. G. and Barnes , M. J. 1999 . Adhesive domains in the collagen III fragment α1(III)CB4 that support α2β1‐ and von Willebrand factor‐mediated platelet adhesion under flow conditions . Thromb. Haemost. , 82 : 1137 – 1144 .
  • Emsley , J. , Knight , C. G. , Farndale , R. W. , Barnes , M. J. and Liddington , R. C. 2000 . Structural basis of collagen recognition by integrin α2β1 . Cell , 101 : 47 – 56 .
  • Knight , C. G. , Morton , L. F. , Peachey , A. R. , Tuckwell , D. S. , Farndale , R. W. and Barnes , M. J. 2000 . The collagen‐binding A‐domains of integrin α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple‐helical) collagens . J. Biol. Chem. , 275 : 35 – 40 .
  • Xu , Y. , Gurusiddappa , S. , Rich , R. L. , Owens , R. T. , Keene , D. R. , Mayne , R. , Höök , A. and Höök , M. 2000 . Multiple binding sites in collagen type I for the integrins α1β1 and α2β1 . J. Biol. Chem. , 275 : 38981 – 38989 .
  • Knight , C. G. , Morton , L. F. , Onley , D. J. , Peachey , A. R. , Ichinohe , T. , Okuma , M. , Farndale , R. W. and Barnes , M. J. 1999 . Collagen‐platelet interaction: Gly‐Pro‐Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen . Cardiovasc. Res. , 41 : 450 – 457 .
  • Asselin , J. , Knight , C. G. , Farndale , R. W. , Barnes , M. J. and Watson , S. P. 1999 . Monomeric (glycine‐proline‐hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI . Biochem. J. , 339 : 413 – 418 .
  • Achison , M. , Joel , C. , Hargreaves , P. G. , Sage , S. O. , Barnes , M. J. and Farndale , R. W. 1996 . Signals elicited from human platelets by synthetic, triple helical, collagen‐like peptides . Blood Coagul. Fibrin. , 7 : 149 – 152 .
  • Asselin , J. , Gibbins , J. M. , Achison , M. , Lee , Y. H. , Morton , L. F. , Farndale , R. W. , Barnes , M. J. and Watson , S. P. 1997 . A collagen‐like peptide stimulates tyrosine phosphorylation of syk and phospholipase cγ2 in platelets independent of the integrin α2β1 . Blood , 89 : 1235 – 1242 .
  • Mountford , J. C. , Melford , S. K. , Bunce , C. M. , Gibbins , J. and Watson , S. P. 1999 . Collagen or collagen‐related peptide cause (Ca2+)i elevation and increased tyrosine phosphorylation in human megakaryocytes . Thromb. Haemost. , 82 : 1153 – 1159 .
  • Pasquet , J.‐M. , Bobe , R. , Gross , B. , Gratacap , M.‐P. , Tomlinson , M. G. , Payrastre , B. and Watson , S. P. 1999 . A collagen‐related peptide regulates phospholipase Cγ2 via phosphatidylinositol 3‐kinase in human platelets . Biochem. J. , 342 : 171 – 177 .
  • Heemskerk , J. W.M. , Siljander , P. , Vuist , W. M.J. , Breikers , G. , Reutelingsperger , C. P.M. , Barnes , M. J. , Knight , C. G. , Lassila , R. and Farndale , R. W. 1999 . Function of glycoprotein VI and integrin α2β1 in the procoagulant response of single, collagen‐adherent platelets . Thromb. Haemost. , 81 : 782 – 792 .
  • Koide , T. , Takahara , Y. , Asada , S. and Nagata , K. 2002 . Xaa‐Arg‐Gly triplets in the collagen triple‐helix are dominant binding sites for the molecular chaperone HSP47 . J. Biol. Chem. , 277 : 6178 – 6182 .
  • Ottl , J. and Moroder , L. 1999 . Disulfide‐bridged heterotrimeric collagen peptides containing the collagenase cleavage site of collagen type I: synthesis and conformational properties . J. Am. Chem. Soc. , 121 : 653 – 661 .
  • Müller , J. C.D. , Ottl , J. and Moroder , L. 2000 . Heterotrimeric collagen peptides as fluorogenic collagenase substrates: synthesis, conformational properties and enzymatic digestion . Biochemistry , 39 : 5111 – 5116 .
  • Lauer‐Fields , J. L. , Tuzinski , K. A. , Shimokawa , K. , Nagase , H. and Fields , G. B. 2000 . Hydrolysis of triple‐helical collagen peptide models by matrix metalloproteinases . J. Biol. Chem. , 275 : 13282 – 13290 .
  • Lauer‐Fields , J. L. , Nagase , H. and Fields , G. B. 2000 . Use of Edman degradation sequence analysis and matrix‐assisted laser desorption/ionization mass spectrometry in designing substrates for matrix metalloproteinases . J. Chromatogr. A , 890 : 117 – 125 .
  • Lauer‐Fields , J. L. , Broder , T. , Sritharan , T. , Nagase , H. and Fields , G. B. 2001 . Kinetic analysis of matrix metalloproteinase triple‐helicase activity using fluorogenic substrates . Biochemistry , 40 : 5795 – 5803 .
  • Lauer‐Fields , J. L. and Fields , G. B. 2002 . Triple‐helical peptide analysis of collagenolytic protease activity . Biol. Chem. , 383 : 1095 – 1105 .
  • Fiori , S. , Saccá , B. and Moroder , L. 2002 . Structural properties of a collagenous heterotrimer that mimics the collagenase cleavage site of collagen type I . J. Mol. Biol. , 319 : 1235 – 1242 .
  • Lauer‐Fields , J. L. , Sritharan , T. , Stack , M. S. , Nagase , H. and Fields , G. B. 2003 . Selective hydrolysis of triple‐helical substrates by matrix metalloproteinase‐2 and ‐9 . J. Biol. Chem. , submitted
  • Yu , Y.‐C. , Pakalns , T. , Dori , Y. , McCarthy , J. B. , Tirrell , M. and Fields , G. B. 1997 . Construction of biologically active protein molecular architecture using self‐assembling peptide‐amphiphiles . Meth. Enzymol. , 289 : 571 – 587 .
  • Dori , Y. , Bianco‐Peled , H. , Satija , S. K. , Fields , G. B. , McCarthy , J. B. and Tirrell , M. 2000 . Ligand accessibility as a means to control cell response to bioactive bilayer membranes . J. Biomed. Mater. Res. , 50 : 75 – 81 .
  • Johnson , G. , Jenkins , M. , McLean , K. M. , Griesser , H. J. , Kwak , J. , Goodman , M. and Steele , J. G. 2000 . Peptoid‐containing collagen mimetics with cell binding activity . J. Biomed. Mater. Res. , 51 : 612 – 624 .
  • Yamamoto , K. , Nishimura , N. , Doi , T. , Imanishi , T. , Kodama , T. , Suzuki , K. and Tanaka , T. 1997 . The lysine cluster in the collagen‐like domain of the scavenger receptor provides for its ligand binding and ligand specificity . FEBS Lett. , 414 : 182 – 186 .
  • Mielewczyk , S. S. , Breslauer , K. J. , Anachi , R. B. and Brodsky , B. 1996 . Binding studies of a triple‐helical peptide model of macrophage scavenger receptor to tetraplex nucleic acids . Biochemistry , 35 : 11396 – 11402 .
  • Sweeney , S. M. , Guy , C. A. , Fields , G. B. and San Antonio , J. D. 1998 . Defining the domains of type I collagen involved in heparin‐binding and endothelial tube formation . Proc. Natl. Acad. Sci. USA , 95 : 7275 – 7280 .
  • Doss‐Pepe , E. , Deprez , P. , Inestrosa , N. C. and Brodsky , B. 2000 . Interaction of collagen‐like peptide models of asymmetric acetylcholinesterase with glycosaminoglycans: spectroscopic studies of conformational changes and stability . Biochemistry , 39 : 14884 – 14892 .
  • Fertala , A. , Sieron , A. I. , Ganguly , A. , Li , S. W. , Alakokko , L. , Anumula , K. R. and Prockop , D. J. 1994 . Synthesis of recombinant human procollagen‐II in a stably transfected tumor‐cell line (HT1080) . Biochem. J. , 298 : 31 – 37 .
  • Tomita , M. , Ohkura , N. , Ito , M. , Kato , T. , Royce , P. M. and Kitajima , T. 1995 . Biosynthesis of recombinant human pro‐α1(III) chains in a baculovirus expression system: production of disulphide‐bonded and non‐disulphide‐bonded species containing full‐length triple helices . Biochem. J. , 312 : 847 – 853 .
  • Tomita , M. , Kitajima , T. and Yoshizato , K. 1997 . Formation of recombinant human procollagen I heterotrimers in a baculovirus expression system . J. Biochem. , 121 : 1061 – 1069 .
  • Nokelainen , M. , Helaakoski , T. , Myllyharju , J. , Notbohm , H. , Pihlajaniemi , T. , Fietzek , P. P. and Kivirikko , K. I. 1998 . Expression and characterization of recombinant human type II collagens with low and high contents of hydroxylysine and its glycosylated forms . Matrix Biol. , 16 : 329 – 338 .
  • Snellman , A. , Keränen , M. R. , Hägg , P. O. , Lamberg , A. , Hiltunen , J. K. , Kivirikko , K. I. and Philajaniemi , T. 2000 . Type XIII collagen forms homotrimers with three triple helical collagenous domains and its association into disulfide‐bonded trimers is enhanced by prolyl 4‐hydroxylase . J. Biol. Chem. , 275 : 8936 – 8944 .
  • Nokelainen , M. , Tu , H. , Vuorela , A. , Notbohm , H. , Kivirikko , K. I. and Myllyharju , J. 2001 . High‐level production of human type I collagen in the yeast Pichia pastoris . Yeast , 18 : 797 – 806 .
  • Arnold , W. V. , Sieron , A. L. , Fertala , A. , Bächinger , H. P. , Mechling , D. and Prockop , D. J. 1997 . A cDNA cassette system for the synthesis of recombinant procollagens . Matrix Biol. , 16 : 105 – 116 .
  • Arnold , W. V. , Fertala , A. , Sieron , A. L. , Hattori , H. , Mechling , D. , Bächinger , H.‐P. and Prockop , D. J. 1998 . Recombinant procollagen II: deletion of D period segments identifies sequences that are required for helix stabilization and generates a temperature‐sensitive N‐proteinase cleavage site . J. Biol. Chem. , 273 : 31822 – 31828 .
  • Goldberg , I. , Salerno , A. J. , Patterson , T. and Williams , J. I. 1989 . Cloning and expression of a collagen‐analog‐encoding synthetic gene in Escherichia coli . Gene , 80 : 305 – 314 .
  • Brüninghoff , A. , Schlosser , S. , Groger , G. , Ortigao , J. F.R. and Seliger , H. 1997 . Solid phase synthesis, cloning and expression of a synthetic gene encoding a collagen‐like peptide . Nucleos. Nucleot. , 16 : 875 – 882 .
  • Schlosser , S. , Groger , G. and Seliger , H. 1998 . Cloning and expression of collagen‐derived protein in E. coli and baculovirus system . Nucleos. Nucleot. , 17 : 1515 – 1522 .
  • Frank , S. , Kammerer , R. A. , Mechling , D. , Schulthess , T. , Landwehr , R. , Bann , J. , Guo , Y. , Lustig , A. , Bächinger , H. P. and Engel , J. 2001 . Stabilization of short collagen‐like triple helices by protein engineering . J. Mol. Biol. , 308 : 1081 – 1089 .
  • Yin , J. , In , J.‐H. , Li , W.‐T. and Wang , D. I.C. 2003 . Evaluation of different promoters and host strains for the high‐level expression of collagen‐like polymer in Escherichia coli . J. Biotechnol. , 100 : 181 – 191 .
  • Geddis , A. E. and Prockop , D. J. 1993 . Expression of human COL1A1 gene in stably transfected HT1080 cells: the production of a thermostable homotrimer of type I collagen in a recombinant system . Matrix , 13 : 399 – 405 .
  • Toman , P. D. , Chisholm , G. , McMullin , H. , Gieren , L. M. , Olsen , D. R. , Kovach , R. J. , Leigh , S. D. , Fong , B. E. , Chang , R. , Daniels , G. A. , Berg , R. A. and Hitzeman , R. A. 2000 . Production of recombinant human type I procollagen trimers using a four‐gene expression system in the yeast Saccharomyces cerevisiae . J. Biol. Chem. , 275 : 23303 – 23309 .
  • Nokelainen , M. , Lamberg , A. , Helaakoski , T. , Myllyharju , J. , Pihlajaniemi , T. and Kivirikko , K. I. 1996 . Characterization of human type I, II and III collagen expressed in insect cells . Matrix Biol. , 15 : 194 – 195 .
  • Toman , P. D. , Pieper , F. , Sakai , N. , Karatzas , C. , Platenburg , E. , de Wit , I. , Samuel , C. , Dekker , A. , Daniels , G. A. , Berg , R. A. and Platenburg , G. J. 1999 . Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice . Transgenic Res. , 8 : 415 – 427 .
  • Tomita , M. , Yoshizato , K. , Nagata , K. and Kitajima , T. 1999 . Enhancement of secretion of human procollagen I in mouse HSP47‐expressing insect cells . J. Biochem. , 126 : 1118 – 1126 .
  • Ruggiero , F. , Exposito , J. Y. , Bournat , P. , Gruber , V. , Perret , S. , Comte , J. , Olagnier , B. , Garrone , R. and Theisen , M. 2000 . Triple helix assembly and processing of human collagen produced in transgenic tobacco plants . FEBS Lett. , 469 : 132 – 136 .
  • van der Rest , M. , Bennett , H. P.J. , Solomon , S. and Glorieux , F. H. 1980 . Separation of collagen cyanogen bromide‐derived peptides by reversed‐phase high‐performance liquid chromatography . Biochem. J. , 191 : 253 – 256 .
  • Fallon , A. , Lewis , R. V. and Gibson , K. D. 1981 . Separation of the major species of interstitial collagen by reverse‐phase high‐performance liquid chromatography . Anal. Biochem. , 110 : 318 – 322 .
  • Smolenski , K. A. , Fallon , A. and Light , N. 1984 . Investigation of the parameters for reversed‐phase high‐performance liquid chromatography of collagen types I and III . J. Chromatogr. , 287 : 29 – 44 .
  • Lewis , R. V. , Fallon , A. , Stein , S. , Gibson , K. D. and Udenfriend , S. 1980 . Supports for reverse‐phase high‐performance liquid chromatography of large proteins . Anal. Biochem. , 104 : 153 – 159 .
  • Skinner , S. J.M. , Grego , B. , Hearn , M. T.W. and Liggins , G. C. 1984 . The separation of collagen a‐chains by reversed‐phase high‐performance liquid chromatography: comparison of column alkyl stationary phases and temperature effects . J. Chromatogr. , 308 : 111 – 119 .
  • Bächinger , H. P. and Morris , N. P. 1990 . Analysis of the thermal stability of type II collagen in various solvents used for reversed‐phase high performance chromatography . Matrix: Collagen Relat. Res. , 10 : 331 – 338 .
  • Black , C. , Douglas , D. M. and Tanzer , M. L. 1980 . Separation of cyanogen bromide peptides of collagen by means of high‐performance liquid chromatography . J. Chromatogr. , 190 : 393 – 400 .
  • van der Rest , M. , Stolle , C. A. , Prockop , D. J. and Fietzek , P. P. 1982 . Separation of human pro α1(I) and pro α2(I) procollagen chains by reverse phase high performance liquid chromatography . Collagen Relat. Res. , 2 : 281 – 285 .
  • van der Rest , M. and Fietzek , P. P. 1982 . A comprehensive approach to the study of collagen primary structure based on high‐performance liquid chromatography . Eur. J. Biochem. , 125 : 491 – 496 .
  • Smolenski , K. A. , Fallon , A. , Light , N. D. and Bailey , A. J. 1983 . Separation of native types I and III collagens and denatured chains by reverse‐phase high‐performance liquid chromatography . Biosci. Rep. , 3 : 93 – 100 .
  • Bateman , J. F. , Mascara , T. , Chan , D. and Cole , W. G. 1986 . Rapid fractionation of collagen chains and peptides by high‐performance liquid chromatography . Anal. Biochem. , 154 : 338 – 344 .
  • Aubert‐Foucher , E. , Font , B. , Eichenberger , D. , Goldschmidt , D. , Lethias , C. and van der Rest , M. 1992 . Purification and characterization of native type XIV collagen . J. Biol. Chem. , 267 : 5759 – 15764 .
  • Minafra , I. P. , Andriolo , M. , Basirico , L. , Aquino , A. , Minafra , S. , Boutillon , M.‐M. and van der Rest , M. 1995 . Onco‐fetal/laminin‐binding collagen from colon carcinoma: detection of new sequences . Biochem. Biophys. Res. Commun. , 207 : 852 – 859 .
  • Kato , Y. , Kitamura , T. and Hashimoto , T. 1985 . Resin‐based support for reversed‐phase chromatography of proteins . J. Chromatogr. , 333 : 93 – 106 .
  • Bächinger , H. P. , Bruckner , P. , Timpl , R. and Engel , J. 1978 . The role of cis–trans isomerization of peptide bonds in the coil ⇔ triple helix conversion of collagen . Eur. J. Biochem. , 90 : 605 – 613 .
  • Holmgren , S. K. , Bretscher , L. E. , Taylor , K. M. and Raines , R. T. 1999 . A hyperstable collagen mimic . Chem. Biol. , 6 : 63 – 70 .
  • Fields , C. G. , Grab , B. , Lauer , J. L. and Fields , G. B. 1995 . Purification and analysis of synthetic, triple‐helical “minicollagens” by reversed‐phase high‐performance liquid chromatography . Anal. Biochem. , 231 : 57 – 64 .
  • Feng , Y. , Taulane , J. P. and Goodman , M. 1997 . Characterization of triple helical structures of synthetic collagen analogs by reverse‐phase high‐performance liquid chromatography . Macromolecules , 30 : 2947 – 2952 .
  • Mant , C. T. , Kondejewski , L. H. , Cachia , P. J. , Monera , O. D. and Hodges , R. S. 1997 . Analysis of synthetic peptides by high‐performance liquid chromatography . Meth. Enzymol. , 289 : 426 – 469 .
  • Tanaka , T. , Wada , Y. , Nakamura , H. , Doi , T. , Imanishi , T. and Kodama , T. 1993 . A synthetic model of collagen structure taken from bovine macrophage scavenger receptor . FEBS Lett. , 334 : 272 – 276 .
  • Peninsula Laboratories Inc. . Belmont, CA. Quality control records for catalog #4005 (12/14/92) and catalog #4006 (8/31/89)
  • Miller , E. J. , Furuto , D. K. and Narkates , A. J. 1991 . Quantitation of type I, III, and V collagens in human tissue samples by high‐performance liquid chromatography of selected cyanogen bromide peptides . Anal. Biochem. , 196 : 54 – 60 .
  • Macek , K. , Deyl , Z. , Coupek , J. and Sanitrak , J. 1981 . Separation of collagen types I and III by high‐performance column liquid chromatography . J. Chromatogr. , 222 : 284 – 290 .
  • Deyl , Z. , Macek , K. , Adam , M. and Horáková , M. 1982 . High‐performance gel permeation chromatography of collagens . J. Chromatogr. , 230 : 409 – 414 .
  • Condell , R. A. , Hanko , V. P. , Larenas , E. A. , Wallace , G. and McCullough , K. A. 1993 . Analysis of native collagen monomers and oligomers by size‐exclusion high‐performance liquid chromatography and its application . Anal. Biochem. , 212 : 436 – 445 .
  • June 2002 . June , 48 Wyatt Technology Corporation. . Gelatins. LC/GC Suppl.: The Application Notebook 2002
  • Kawasaki , T. , Takahashi , S. and Ikeda , K. 1985 . Hydroxyapatite high‐performance liquid chromatography: column performance for proteins . Eur. J. Biochem. , 152 : 361 – 371 .
  • Sato , K. , Taira , T. , Takayama , R. , Ohtsuki , K. and Kawabata , M. 1995 . Improved chromatographic purification of human and bovine type V collagen sub‐molecular species and their subunit chains from conventional crude preparations: application to cell‐substratum adhesion assay for human umbilical vein endothelial cell . J. Chromatogr. B , 663 : 25 – 33 .
  • Sato , K. , Tanahashi‐Shima , T. , Jun , F. , Watanabe‐Kawamura , A. , Ichinomiya , M. , Minegishi , Y. , Tsukamasa , M. , Nkamaura , Y. , Kawabata , M. and Ohtsuki , K. 2003 . Simple and rapid chromatographic purification of type V collagen: potential for large‐scale preparation for medical applications . J. Chromatogr. , in press
  • Deyl , Z. , Rohlicek , V. and Adam , M. 1989 . Separation of collagens by capillary zone electrophoresis . J. Chromatogr. , 480 : 371 – 378 .
  • Deyl , Z. , Rohlicek , V. and Struzinsky , R. 1989 . Some rules applicable to capillary zone electrophoresis of peptides and proteins . J. Liq. Chromatogr. , 12 : 2515 – 2526 .
  • Novotná , J. , Deyl , Z. and Miksik , I. 1996 . Capillary zone electrophoresis of collagen type I CNBr peptides in acid buffers . J. Chromatogr. B , 681 : 77 – 82 .
  • Miksik , I. , Novotná , J. , Uhrová , M. , Jelínková , D. and Deyl , Z. 1997 . Capillary electrophoresis of large cyanogen bromide peptides of fibre‐forming collagens with special reference to cross‐linking . J. Chromatogr. A , 772 : 213 – 220 .
  • Harada , O. , Sumita , S. , Sugita , M. and Yamamoto , T. 1996 . Characterization of collagen by capillary electrophoresis . Bull. Chem. Soc. Jpn. , 69 : 3575 – 3579 .
  • Feng , Y. , Melacini , G. , Taulane , J. P. and Goodman , M. 1996 . Acetyl‐terminated and template‐assembled collagen‐based polypeptides composed of Gly‐Pro‐Hyp sequences. 2. Synthesis and conformational analysis by circular dichroism, ultraviolet absorbance, and optical rotation . J. Am. Chem. Soc. , 118 : 10351 – 10358 .
  • Fields , C. G. , Grab , B. , Lauer , J. L. , Miles , A. J. , Yu , Y.‐C. and Fields , G. B. 1996 . Solid‐phase synthesis of triple‐helical collagen‐model peptides . Lett. Peptide Sci. , 3 : 3 – 16 .
  • Henkel , W. , Vogl , T. , Echner , H. , Voelter , W. , Urbanke , C. , Schleuder , D. and Rauterberg , J. 1999 . Synthesis and folding of native collagen III model peptides . Biochemistry , 38 : 13610 – 13622 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.