26
Views
8
CrossRef citations to date
0
Altmetric
Original

Myosin Light Chain Modification Depending on Magnetic Fields: II. Experimental

Pages 125-140 | Published online: 07 Jul 2009

References

  • Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle MLCK. J. Biol. Chem. 1981; 256: 7501
  • Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields. Proc. Natl. Acad. Sci. USA 1976; 73: 1999–2003
  • Bull A. W., Chreng S., Jernow K. A., Liboff A. R. Weak magnetostatic fields alter calmodulin-dependent cyclic nucleotide phosphodiesterase activity. Electricity and Magnetism in Biology and Medicine, M. Blank. San Francisco Press Inc., San Francisco 1993; pp. 319–322
  • Cavopol A. V., Wamil A. W., Holcomb R. R., McLean M. J. Measurement and analysis of static magnetic fields that block action potential in cultured neurons. Bioelectromagnetics 1995; 16: 197–206, [CSA]
  • Chiabrera A., Bianco B., Caratozzolo F., Gianetti G., Grattarola M., Viviani R. Electric and magnetic field effects on ligand binding to the cell membrane. Interactions between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum Press, New York 1995; pp. 253–280
  • Coulton L. A., Barker A. T., Van Lierup J. E., Walsh M. P. The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain. Bioelectromagnetics 2000; 21: 189–196, [CROSSREF], [CSA]
  • Engstrom S., Markov M. S., McLean M. J., Holcomb R. R., Markov J. M. Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics 2002; 23: 475–479, [CROSSREF], [CSA]
  • Fabiato A., Fabiato F. Calculator programs for computing the comparison of solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 1979; 75: 463–505
  • Lednev V. V. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 1991; 12: 71–75
  • Liboff A. R. Cyclotron resonance in membrane transport. Interactions between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum Press, New York 1985; pp. 281–296
  • Liboff A. R., Cherng S., Jenrow K. A., Bull A. Calmodulin dependent cyclic nucleotide phosphodiesterase activity is altered by 20 µT magnetostatic field. Bielectromagnetics 2003; 24: 32–38, [CROSSREF]
  • Markov M. S. Magnetic and electromagnetic fields—a new frontier in clinical biology and medicine. Millennium International Workshop on Biological Effects of Electromagnetic Fields. CreteGreece 2000; 365–372, ISBN # 960-86733-0-5
  • Markov M. S. Myosin light chain modification depending on magnetic fields. I. Theoretical. Electromagnetic Biol. Med. 2004a; 23: 55–74, [CROSSREF]
  • Markov M. S. Myosin phosphorylation: a plausible toal for studying biological windows. Proceedings of the 3rd International Workshop. Biological Effects of Electromagnetic Fields. 2004b; 1–9
  • Markov M. S., Todorov N. G. Electromagnetic field simulation of some physiological properties. Stud. Biophys. 1984; 99: 151–156
  • Markov M. S., Pilla A. A. Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation. Electricity and Magnetism in Biology and Medicine, M. Blank. San Francisco Press Inc., San Francisco 1993; pp. 323
  • Markov M. S., Pilla A. A. Modulation of cell-free myosin light chain phosphorylation with weak low frequency and static magnetic fields. On the Nature of Interaction of Electromagnetic Fields with Biological Systems, A. R. Frey. Landes Co., Austin, TX 1994a; pp. 172–141
  • Markov M. S., Pilla A. A. Static magnetic field modulation of myosin phosphorylation: calcium dependence in two enzyme preparations. Bioelectrochem. Bioenerg. 1994b; 35: 57–61, [CROSSREF]
  • Markov M. S., Pilla A. A. Electromagnetic field stimulation of soft tissue: pulsed radiofrequency treatment of post-operational pain and edema. Wounds 1995; 7: 143–151
  • Markov M. S., Pilla A. A. Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence. Bioelectrochem. Bioenerg. 1997; 43: 233–238, [CROSSREF], [CSA]
  • Markov M. S., Ryaby J. T., Kaufman J. J., Pilla A. A. Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation. Charge and Field Effects in Biosystems-3, M. J. Allen, S. F. Cleary, A. E. Sowers, D. D. Shillady. Birkhauser, Boston 1992; pp. 225
  • Markov M. S., Wang S., Pilla A. A. Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation. Bioelectrochem. Bioenerg. 1993; 30: 119–125, [CROSSREF]
  • Markov M. S., Muesham D. J., Pilla A. A. Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields. Charge and Field Effects in Biosystems-4, M. J. Allen, S. F. Cleary, A. E. Sowers. World Scientific. 1994c; pp. 274–288
  • Markov M. S., Williams C. D., Cameron I. L., Hardman W. E., Salvatore J. R. Can magnetic field inhibit angiogensis and tumor growth. Bioelectromagnetic Medicine, P. I. Rosch, M. S. Markov. Marcel Dekker, , NY 2004a; pp. 625–636
  • Markov M. S., Engstrom S., McLean M. J. 2004b, In preparation
  • McLeod B. R., Liboff A. R. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics 1986; 7: 177–189
  • Muehsam D. J., Pilla A. A. Weak magnetic field modulation of ion dynamics in a potential well: mechanistic and thermal noise considerations. Bioelectrochemistry and Bioenergetics 1994; 35: 71–79, [CROSSREF]
  • Pilla A. A., Muehsam D. J., Markov M. S. A Dynamic system/Larmor Precession Model for weak magnetic field bioeffects: Ion binding and orientation of bound water molecules. Bioelectrochemistry and Bioenergetics 1997; 43: 239–249, [CROSSREF]
  • Pilla A. A., Muehsam D. J., Markov M. S., Sisken B. F. EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. Bioelectrochem. Bioenerg. 1999; 48: 27–34, [CROSSREF], [CSA]
  • Shuvalova L. A., Ostrovskaya M. V., Sosunov E. A., Lednev V. V. Weak magnetic fields tuned to the parametric resonance condition change the rate of calcium–calmodulin dependent myosin phosphorylation. Reports of the Academy of Sciences. USSR 1991; 317: 227–231, [CSA]
  • Todorov N. Magnetotherapy. Sofia. Meditzina i Physcultura Publishing House, 1982. Bulgaria, 106 pp
  • Williams C. D., Markov M. S. Therapeutic electromagnetic field designed to inhibit angiogenesis: a pilot study. Electro-Magnetobiol. 2001; 20: 323–329, [CROSSREF], [CSA]
  • Williams C. D., Markov M. S., Hardman W. E., Cameron I. L. Therapeutic electromagnetic field effects on angiogenesis and tumor growth. Anticancer 2001; 21: 3887–3892, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.