2,198
Views
105
CrossRef citations to date
0
Altmetric
Research Article

Hydrolysis in Pharmaceutical Formulations

, , , , , , , , , , , & show all
Pages 113-146 | Received 14 Oct 2000, Accepted 18 Aug 2001, Published online: 29 May 2002

REFERENCES

  • Alsante K.M., Friedmann R.C., Hatajik T.D., Lohr L.L., Sharp T.R., Snyder K.D., Szczesny E.J. S. Ahuja, S. ScypinskiHandbook of Modern Pharmaceutical Analysis, . Academic Press, Boston 2001; Vol. 3: 85–172
  • Yoshioka S., Aso Y., Kojima S. Temperature Dependence of Bimolecular Reactions Associated with Molecular Mobility in Lyophilized Formulations. Pharm. Res. 2000; 17: 925–929
  • Streefland L., Auffret A.D., Franks F. Bond Cleavage Reactions in Solid Aqueous Carbohydrate Solutions. Pharm. Res. 1998; 15: 843–849
  • Bell L.N., Labuza T.P. H. Levine, L. SladeAspartame Degradation as a Function of Water Activity. Water Relationships in Food, . Plenum Press, New York 1991; 337–349
  • Duddu S.P., Weller K. Importance of Glass Transition Temperature in Accelerated Stability Testing of Amorphous Solids: Case Study Using a Lyophilized Aspirin Formulation. J. Pharm. Sci. 1996; 85: 345–347
  • Royall P.G., Craig D.Q.M., Doherty C. Characterization of the Glass Transition of an Amorphous Drug Using Modulated DSC. Pharm. Res. 1998; 15: 1117–1121
  • Yoshioka S., Aso Y., Kojima S. The Effect of Excipients On the Molecular Mobility of Lyophilized Formulations, as Measured by Glass Transition Temperature and NMR Relaxation-Based Critical Mobility Temperature. Pharm. Res. 1999; 16: 135–140
  • , Collins, G.L., Galop, M., Shalaev, E., Pikal, M.J., (2000). Measurement of Weak Glass Transitions in Amorphous Pharmaceutical Formulations. AAPS Annual Meeting Abstract.
  • Nyqvist H. Int. Saturated Salt Solutions for Maintaining Specific Relative Humidities. J. Pharm. Technol. Prod. Mfr. 1983; 4(2)47–48
  • Okamura M., Hanano M., Awazu S. Relationship Between the Morphological Character of 5-Nitroacetylsalicylic Acid Crystals and the Decomposition Rate in a Humid Environment. Chem. Pharm. Bull. 1980; 28(2)578–584
  • Snow M.L., Lauinger C., Ressler C. 1,4-Cyclohexadiene-1-alanine (2,5-Diydrophenylalanine), a New Inhibitor or Phenylalanine for the Rat and Leuconostoc dextranicum. J. Org. Chem. 1968; 33: 1774–1780
  • Ressler C. Solid State Dehydrogenation of l-1,4-Cyclohexadiene-1-Alanine Hydrate to l-Phenylalanine. J. Org. Chem. 1972; 37: 2933–2936
  • Ahlneck C., Zografi G. The Molecular Basis of Moisture Effects on the Physical and Chemical Stability of Drugs in the Solid State. Int. J. Pharm. 1990; 62: 87–95
  • Ball M.C. Solid-State Hydrolysis of Aspirin. J. Chem. Soc., Faraday Trans. 1994; 90(7)997–1001
  • Yoshioka S., Carstensen J.T. Nonlinear Estimation of Kinetic Parameters for Solid-State Hydrolysis of Water-Soluble Drugs II. Rational Presentation Mode Below the Critical Moisture Content. J. Pharm. Sci. 1990; 79(9)799–801
  • Yoshioka S., Uchiyama M. Nonlinear Estimation of Kinetic Parameters for Solid-State Hydrolysis of Water-Soluble Drugs. J. Pharm. Sci. 1986; 75(5)459–462
  • Yoshioka S., Uchiyama M. Kinetics and Mechanism of the Solid-State Decomposition of Propantheline Bromide. J. Pharm. Sci. 1986; 75(1)92–96
  • A. KibbeHandbook of Pharmaceutical Excipients, . 3rd Ed., American Pharmaceutical Association/Pharmaceutical Press, London 2000
  • Nelson E., Eppich D., Carstensen J.T. Topochemical Decomposition Patterns of Aspirin. J. Pharm. Sci. 1974; 63(5)755–757
  • Mroso P.V., Po A.L.W., Irwin W.J. Solid-State Stability of Aspirin in the Presence of Excipients: Kinetic Interpretation, Modeling, and Prediction. J. Pharm. Sci. 1982; 71(10)1096–1101
  • Smith M.B., March M.J. Advanced Organic Chemistry. Reactions, Mechanisms and Structure. 5th Ed., Wiley, New York 2001; 1177–1178
  • Carey F.A., Sundberg R.J. Advanced Organic Chemistry, Part A: Structure and Mechanisms. 3rd Ed., Plenum Press, New York 1990; 465–470
  • Connors K.A., Amidon G.L., Stella V.J. Chemical Stability of Pharmaceuticals. A Handbook for Pharmacists. 2nd Ed, Wiley, New York 1986; 163–808
  • Kahne D., Still W.C. Hydrolysis of a Peptide Bond in Neutral Water. J. Am. Chem. Soc. 1988; 110(22)7529–7534
  • Jencks W., Carriuolo J. General Base Catalysis for Ester Hydrolysis. J. Am. Chem. Soc. 1961; 83: 1743–1750
  • Patai S. The Chemistry of Carboxylic Acids and Esters. Interscience Publishers, New York 1969; 506–523
  • Imming P., Klar B., Dix D. Hydrolytic Stability Versus Ring Size in Lactams: Implications for the Development of Antibiotics and Other Serine Protease Inhibitors. J. Med. Chem. 2000; 43(22)4328–4331
  • Long F.A., Purchase M. The Kinetics of Hydrolysis of β-Propiolactone in Acid, Neutral and Basic Solutions. J. Am. Chem. Soc. 1950; 72: 3267–3273
  • Bender M.L., Thomas R.J. The Concurrent Alkaline Hydrolysis and Isotopic Oxygen Exchange of a Series of p-Substituted Acetanilides. J. Am. Chem. Soc. 1961; 83: 4189–4193
  • Bender M.L., Pollack R.M. Alkaline Hydrolysis of p-Nitroacetanilide and p-Formylacetanilide. J. Am. Chem. Soc. 1970; 92(24)7190–7194
  • Cordes E.H., Jencks W.P. The Mechanism of Hydrolysis of Schiff Bases Derived from Aliphatic Amines. J. Am. Chem. Soc. 1963; 85(18)2843–2848
  • Bruylants A., Feytmants-De Medicis E. S. PataiThe Chemistry of the Carbon–Nitrogen Double Bond, . Wiley-Interscience, New York 1970; 465–504, Chap. 10
  • Challis B.C., Challis J.A. S. PataiThe Chemistry of Amides, . Wiley, New York 1970; 816–831, Chap. 13
  • Hine J., Craig J.C., Jr., Underwood J.G., Via F.A. Kinetics and Mechanism of N-Isobutylidenemethylamine in Aqueous Solution. J. Am. Chem. Soc. 1970; 92: 5194–5199
  • Kirsch L.E., Notari R.E. Theoretical Basis for the Detection of General-Base Catalysis in the Presence of Predominating Hydroxide Catalysis. J. Pharm. Sci. 1984; 73(6)724–727
  • Gopalakrishnan G., Hogg J.L. Differentiation of Nucleophilic and General Base Catalysis in Hydrolysis of N-Acetylbenzotriazole Using the Proton Inventory Technique. J. Org. Chem. 1981; 46(24)4959–4964
  • Neuvonen H. Kinetics and Mechanisms of Reactions of Pyridines and Imidazoles with Phenyl Acetates and Trifluoroacetates in Aqueous Acetonitrile with Low Content of Water: Nucleophilic and General-Base Catalysis in Ester Hydrolysis. J. Chem. Soc., Perkin Trans. 1987; 2: 159–167
  • Fife T.H., Przystas T.J. Divalent Metal Ion Catalysis in the Hydrolysis of Esters of Picolinic Acid. Metal Ion Promoted Hydroxide Ion and Water Catalyzed Reactions. J. Am. Chem. Soc. 1985; 107(4)1041–1047
  • Kluger R., Loo R.W., Mazza V. Biomimetically Activated Amino Acids. Catalysis in the Hydrolysis of Alanyl Ethyl Phosphate. J. Am. Chem. Soc. 1997; 119(50)12089–12094
  • Przystas T.J., Fife T.H. The Metal-Ion Promoted Water and Hydroxide-Ion Catalyzed Hydrolysis of Amides. J. Chem. Soc., Perkin Trans. 1990; 2(3)393–399
  • Fife T.H., Przystas T.J. Metal Ion Catalysis of Anhydride Hydrolysis. Metal Ion Promoted Water and Hydroxide Ion Catalyzed Reactions of Mixed Cinnamic Acid Anhydrides. J. Am. Chem. Soc. 1983; 105(6)1638–1642
  • Mortellaro M.A., Bleisch T.J., Duerr B.F., Kang M.S., Huang H., Czarnik A.W. Metal Ion-Catalyzed Hydrolysis of Acrylate Ester and Amides by Way of Their Conjugate Addition Adducts. J. Org. Chem. 1995; 60(22)7238–7246
  • Gensmantel N.P., Proctoe P., Page M. Metal Ion Catalyzed Hydrolysis of Some β-Lactam Antibiotics. J. Chem. Soc., Perkin Trans. 2 1980; 11: 1725–1732
  • Warnecke J.M., Held R., Busch S., Hartmann R.K. Role of Metal Ions in the Hydrolysis Reaction Catalyzed by RNAase P RNA From Bacillus subtilis. J. Mol. Biol. 1999; 290(2)433–445
  • Martin A., Bustamante P., Chun A.H.C. Physical Pharmacy. 4th Ed., Lea & Febiger, Philadelphia 1993; 284–323
  • Ksotenbauder H.B., Bogardus J.B. A.R. GennaroRemington's Pharmaceutical Sciences, . 17th Ed., Mack Publishing, Easton 1985; 249–257
  • Fubara J.O., Notari R.E. Influence of pH, Temperature and Buffers on Cefepime Degradation Kinetics and Stability Predictions in Aqueous Solutions. J. Pharm. Sci. 1998; 87(12)1572–1576
  • Stewart P.J., Tucker I.G. Prediction of Drug Stability—Part 2: Hydrolysis. Aust. J. Hosp. Pharm. 1985; 15(1)11–16
  • Dawson R.M., Crone H.D., Bladen M.P., Poretski M. A Comparison of the Effects of Ionic Strength on Three Preparations of Acetylcholinesterase in the Presence and Absence of Gallamine. Neurochem. Int. 1981; 3(5)335–341
  • Sluiter C., Ketteners-van den Bosch J.J., Hop E., van der Houwen O.A.G.J., Underberg W.J.M., Bult A. Degradation Study of the Investigational Anticancer Drug Clanfenur. Int. J. Pharm. 1999; 185(2)227–235
  • Grit M., Zuidam N.J., Underberg W.J.M., Crommelin D.J.A. Hydrolysis of Partially Saturated Egg Phosphatidylcholine in Aqueous Liposome Dispersions and the Effect of Cholesterol Incorporation on Hydrolysis Kinetics. J. Pharm. Pharmacol. 1993; 45(6)490–495
  • Garrett E.R., Bojarski J.T., Yakatan G.J. Kinetics of Hydrolysis of Barbituric Acid Derivatives. J. Pharm. Sci. 1971; 60(8)1145–1154
  • Pech B., Duval O., Richomme P., Benoit J.P. A Timolol Prodrug for Improved Ocular Delivery: Synthesis, Conformational Study and Hydrolysis of Palmitoyl Timolol Malonate. Int. J. Pharm. 1996; 128((1,2))179–188
  • Boehm J.J., Poust R.I. Hydrolysis of Succinylcholine Chloride in pH Range 3.0 to 4.5. Chem. Pharm. Bull. 1984; 32(3)1113–1119
  • Pawelczyk E., Plotkowiak Z. Kinetics of Drug Decomposition LIV. Thermodynamic Parameters of Ampicillin Hydrolysis Catalyzed by Hydrogen and Hydroxyl Ions. Acta Pol. Pharm. 1978; 35(5)551–560
  • Hoellering R., Gasteiger J., Steinhauer L., Schulz K.-P., Herwig A. Simulation of Organic Reactions: From the Degradation of Chemicals to Combinatorial Synthesis. J. Chem. Inf. Comput. Sci. 2000; 40: 482–494
  • Ihlenfeldt W.D., Gasteiger J. Computer Assisted Planning of Organic Synthesis: The Second Generation of Programs. Angew. Chem., Int. Ed. Eng. 1996; 34(23/24)2613–2633
  • Judson P.N., Lea H. Accessing Knowledge About Chemical Synthesis by Computer. Chim. Oggi 1996; 14(9)21–24
  • Jorgensen W.L., Laird E.R., Gushurst A.J., Fleischer J.M., Gothe S.A., Helson H.E., Pederes G.D., Sinclair S. CAMEO: A Program for the Logical Prediction of Products of Organic Reactions. Pure Appl. Chem. 1990; 62: 1921–1932
  • , Campeta, A.M., Santafianos, D., personal communication.
  • Carstensen J.T. J.T. Carstensen, C.T. RhodesInteractions of Moisture with Solids. Drug Stability: Principles and Practices, . 3rd Ed., Marcel Dekker, New York 2000; 191–208
  • Carstensen J.T. Effect of Moisture on the Stability of Solid Dosage Forms. Drug Dev. Ind. Pharm. 1988; 14(14)1927–1969
  • Thiel P.A., Madley T.T. The Interaction of Water with Solid Surfaces: Fundamental Aspects. Surface Sci. Rep. 1987; 7: 211–385
  • Byrn S.R., Pfeiffer R.R., Stowell J.G. Solid-State Chemistry of Drugs. SSCI Press, West Lafayette 1999; 235–237
  • Saleki-Gerhardt A., Ahlneck C., Zografi G. Assessment of Disorder in Crystalline Solids. Int. J. Pharm. 1994; 101(3)237–247
  • Stoloff L. Calibration of Water Activity Measuring Instruments and Devices: Collaborative Study. J. Assoc. Off. Anal. Chem. 1978; 61: 1166–1178
  • Chen Y.H., Aull J.L., Bell L.N. Solid-State Tyrosinase Stability as Affected by Water Activity and Glass Transition. Food Res. Int. 1999; 32: 467–472
  • Labuza T.P. The Effect of Water Activity on the Reaction Kinetics of Food Deterioration. Food Technol. 1980; 34(4)36–41, 59
  • Rockland L.B., Nishi S.K. Influence of Water Activity on Food Product Quality and Stability. Food Technol. 1980; 34(4)42–51
  • Rockland L.B., Stewart G.F. Water Activity: Influences on Food Quality. Academic Press, New York 1981; 435–678
  • Bell L.N., Hageman M.J. A Model System for Differentiating Between Water Activity and Glass Transition Effects on Solid State Chemical Reactions. J. Food Qual. 1995; 18: 141–147
  • Schwimmer S. Influence of Water Activity on Enzyme Reactivity and Stability. Food Technol. 1980; 34(5)64–72
  • Zografi G., Kontny M.J. The Interactions of Water with Cellulose and Starch Derived Pharmaceutical Excipients. Pharm. Res. 1986; 3(4)187–194
  • Zografi G. States of Water Associated with Solids. Drug Dev. Ind. Pharm. 1988; 14: 1905–1926
  • Heidemann D.R., Jarosz P.J. Preformulation Studies Involving Moisture Uptake in Solid Dosage Forms. Pharm. Res. 1991; 8(3)292–297
  • Ahlneck C., Lundgren P. Methods for the Evaluation of Solid State Stability and Compatibility Between Drug and Excipient. Acta Pharm. Suec. 1986; 22(5)305–314
  • Leeson L.J., Mattocks A.M. Decomposition of Aspirin in the Solid State. J. Am. Pharm. Assoc. Sci. Ed 1958; 47: 329
  • Shalaev E.Y., Zografi G. Interrelationships Between Phase Transformations and Organic Chemical Reactivity in the Solid State. J. Phys. Org. Chem. 1996; 9(11)729–738
  • Ahlneck C., Waltersson J.O., Lundgren P. Difference in Effect of Powdered and Granular Magnesium Stearate on the Solid State Stability of Acetylsalicylic Acid. Acta Pharm. Technol. 1987; 33(1)21–26
  • Landin M., Casalderrey M., Martinez-Pacheco R., Gomez-Amoza J.L., Souto C., Concheiro A., Rowe R.C. Chemical Stability of Acetylsalicylic Acid in Tablets Prepared with Different Particle Size Fractions of a Commercial Brand of Dicalcium Phosphate Dihydrate. Int. J. Pharm. 1995; 123(1)143–144
  • Pikal M.J., Lukes A.L., Lang J.E., Gaines K. Quantitative Crystallinity Determinations for β-Lactam Antibiotics by Solution Calorimetry: Correlations with Stability. J. Pharm. Sci. 1978; 67: 767–773
  • Shalaev E.Y., Franks F. Changes in the Physical State of Model Mixtures During Freezing and Drying: Impact on Product Quality. Cryobiology 1996; 33: 14–26
  • Oliyai C., Patel J.P., Carr L., Borchardt R.T. Chemical Pathways of Peptide Degradation VII. Solid-State Chemical Instability of an Aspartyl Residue in a Model Hexapeptide. Pharm. Res. 1994; 11: 901–908
  • Oliyai C., Patel J.P., Carr L., Borchardt R.T. Solid-State Chemical Instability of an Asparaginyl Residue in a Model Hexapeptide. J. Pharm. Sci. Technol. 1994; 48: 167–173
  • Oliyai C., Borchardt R.T. J.L. Cleland, R. LangerSolution and Solid-State Chemical Instabilities of Asparaginyl and Aspartyl Residues in Model Peptides. Formulation and Delivery of Proteins and Peptides, . ACS, Washington 1994; 46–58
  • Lai M.C., Schowen R.L., Borchardt R.T. Deamidation of a Model Hexapeptide in Poly(Vinylalcohol) Hydrogels and Xerogels. J. Pept. Res. 2000; 55: 93–101
  • Li S., Patapoff T.W., Overcashier D., Hsu C., Nguyen T.H., Borchardt R.T. Effects of Reducing Sugars on the Chemical Stability of Human Relaxin in the Lyophilized State. J. Pharm. Sci. 1996; 85: 873–877
  • Pikal M., Dellerman K., Roy M.L. Formulation and Stability of Freeze-Dried Proteins: Effects of Moisture and Oxygen on the Stability of Freeze-Dried Formulations of Human Growth Hormone. Dev. Biol. Stand. 1991; 74: 21–38
  • Yoshioka S., Aso Y., Kojima S. Temperature Dependence of Bimolecular Reactions Associated with Molecular Mobility in Lyophilized Formulations. Pharm. Res. 2000; 17: 925–929
  • Herman B.D., Sinclair B.D., Milton N., Nail S.L. The Effect of Bulking Agent on the Solid-State Stability of Freeze-Dried Methylprednisolone Sodium Succinate. Pharm. Res. 1994; 11: 1467–1473
  • Strickley R.G., Visor G.C., Lin L.-H., Gu L. An Unexpected pH Effect on the Stability of Moexipril Lyophilized Powder. Pharm. Res. 1989; 6: 971–975
  • Poochikian G.K., Cradock J.C., Davignon J.P. Heroin: Stability and Formulation Approaches. Int. J. Pharm. 1983; 13: 219–226
  • Almarsson Ö., Seburg R.A., Godshall D., Tsai E.W., Kaufman M.J. Solid-State Chemistry of a Novel Carbapenem with a Releasable Sidechain. Tetrahedron 2000; 56: 6877–6885
  • Pikal M.J., Dellerman K.M. Stability Testing of Pharmaceuticals by High-Sensitivity Isothermal Calorimetry at 25°C: Cephalosporins in the Solid and Aqueous Solution States. Int. J. Pharm. 1989; 50: 233–252
  • Shalaev E.Y., Lu Q., Shalaeva M., Zografi G. Acid-Catalyzed Inversion of Sucrose in the Amorphous State at Very Low Levels of Residual Water. Pharm. Res. 2000; 17: 366–370
  • Karel M., Labuza T.P. Nonenzymatic Browning in Model Systems Containing Sucrose. J. Agric. Food Chem. 1968; 16(5)717–719
  • Schebor C., Buera M.d.P., Chirife J., Karel M. Sucrose Hydrolysis in a Glassy Starch Matrix. Food Sci. Technol. (London) 1995; 28(2)245–248
  • Townsend M.W., DeLuca P.P. Use of Lyoprotectants in the Freeze-Drying of a Model Protein, Ribonuclease A. J. Parenter. Sci. Technol. 1988; 42: 190–199
  • Flink J.M. Nonenzymatic Browning of Freeze-Dried Sucrose. J. Food Sci. 1983; 48: 539–542
  • Shalaev E.Y., Zografi G. How Does Residual Water Affect the Solid-State Degradation of Drugs in the Amorphous State?. J. Pharm. Sci. 1996; 85: 1137–1141
  • Bell L.N., Labuza T.P. Potential pH Implications in the Freeze-Dried State. Cryo Lett. 1991; 12: 235–244
  • , Shalaev, E.Y.; Johnson, T.D.; Chang, L.; Pikal, M.J. Thermomechanical Properties of Pharmaceutically Compatible Buffers at Sub-zero Temperatures: Implications for Freeze-Drying. Pharm. Res., –
  • Akers M.J., Milton N., Byrn S.R., Nail S.L. Glycine Crystallization During Freezing: The Effects of Salt Form, pH, and Ionic Strength. Pharm. Res. 1995; 12: 1457–1461
  • Osterberg T., Wadsten T. Physical State of l-Histidine After Freeze-Drying and Long-Term Storage. Eur. J. Pharm. Sci. 1999; 8: 301–308
  • van den Berg L. pH Changes in Buffers and Foods During Freezing and Subsequent Storage. Cryobiology 1966; 3: 236–242
  • Carpenter J.F., Pikal M.J., Chang B.S., Randolph T.W. Rational Design of Stable Lyophilized Protein Formulations: Some Practical Advice. Pharm. Res. 1997; 14: 969–975
  • Viswanathan A., Doestsch P.W. Effects of Nonbulky DNA Base Damages On Escherichia coli RNA Polymerase-Mediated Elongation and Promoter Clearance. J. Biol. Chem. 1998; 273(33)21276–21281
  • Lindahl T. Instability and Decay of the Primary Structure of DNA. Nature 1993; 22: 709–715
  • Loeb L.A., Preston B.D. Mutagenesis by Apurinic/Apyrimidinic Sites. Annu. Rev. Genet. 1986; 20: 201–230
  • Lindahl T., Nyberg B. Rate of Depurination of Native Deoxyribonucleic Acid. Biochemistry 1972; 11(19)3610–3617
  • Middaugh C.R., Evans R.K., Montgomery D.L., Casimiro D.R. Analysis of Plasmid DNA from a Pharmaceutical Perspective. J. Pharm. Sci. 1998; 87(2)130–146
  • Evans R.K., Xu Z., Bohannon K.E., Wang B., Bruner M.W., Volkin D.B. Evaluation of Degradation Pathways for Plasmid DNA in Pharmaceutical Formulations via Accelerated Stability Studies. J. Pharm. Sci. 2000; 89(1)76–87
  • Cleland J.L., Powell M.F., Shire S.J. The Development of Stable Protein Formulations: A Close Look at Protein Aggregation, Deamidation, and Oxidation. Crit. Rev. Ther. Drug Carrier Syst. 1993; 10(4)307–377
  • Asgharnejad M. Improving Oral Drug Transport via Prodrugs. Drugs Pharm. Sci. 2000; 102: 185–218, Transport Processes in Pharmaceutical Systems
  • Smyth T.P., O'Donnell M.E., O'Connor M.J., St. Ledger J.O. β-Lactamase-Dependent Prodrugs-Recent Developments. Tetrahedron 2000; 56(31)5699–5707
  • Han H.-K., Amidon G.L. Targeted Prodrug Design to Optimize Drug Delivery. Pharm. Sci. 2000; 2(1)
  • Gao H., Mitra A.K. Synthesis of Acyclovir, Ganciclovir and Their Prodrugs: A Review. Synthesis 2000, 3: 329–351
  • Prokai L., Prokai-Tatrai K. Metabolism-Based Drug Design and Drug Targeting. Pharm. Sci. Technol. Today 1999; 2(11)457–462
  • Siemers N.O., Senter P.D. Selective Drug Delivery Using Targeted Enzymes for Prodrug Activation. Stud. Med. Chem. 1999; 3: 115–133, Antibodies in Diagnosis and Therapy
  • Cooper D.R., Marrell C., Testa B., Van de Waterbeemd H., Quinn N., Jenner P., Marsden C.D. l-Dopa Methyl Ester—A Candidate for Chronic Systemic Delivery of l-Dopa in Parkinson's Disease. Clin. Neuropharmacol. 1984; 7: 89–98
  • Whitehouse M.W., Rainsford K.D. Esterification of Acidic Antiinflammatory Drugs Suppresses Their Gastrotoxicity Without Adversely Affecting Their Antiinflammatory Activity in Rats. J. Pharm. Pharmacol. 1980; 32(11)795–796
  • Wermuth C.G. Amino-Glycolic and -Lactic Esters as Pro-Drugs of Amino Acids. Chem. Ind. 1980, 11: 433–435
  • Cioli V., Putzolu S., Rossi V., Corradino C. A Toxicological and Pharmacological Study of Ibuprofen Guaiacal Ester (AF 2259) in the Rat. Toxicol. Appl. Pharmacol. 1980; 54: 332–339
  • Paris G.Y., Garmaise D.L., Cimon D.G., Sweet L., Carter G.W., Young P. Glycerides as Prodrugs. 3. Synthesis and Antiinflammatory Activity of [1-(p-Chlorobenzoyl)-5-Methoxy-2-Methylindole-3-Acetyl] Glycerides (Indomethacin Glycerides). J. Med. Chem. 1980; 23(1)9–13
  • Jones G. Lipoidal Pro-Drug Analogs of Various Anti-Inflammatory Agents. Chem. Ind. 1980, 11: 452–456
  • Barasoain I., Rojo J.M., Sunkel C., Partoles A. Indomethacin Esters Acting as Anti-Inflammatory and Immunosuppressive Drugs. Int. J. Clin. Pharmacol. 1978; 16(5)235–239
  • Arita T., Miyazaki K., Kohri N., Saitoh H. The Behavior in Gastrointestinal Tract and Biliary Secretion of Acemetacin. J. Pharm. Soc. Jpn 1982; 102: 477–483
  • Colla L., DeClerq E., Busson R., Vanderhaeghe H. Synthesis and Antiviral Activity of Water-Soluble Esters of Acyclovis (9-[2-(Hydroxyethoxy) Methyl] Guanine). J. Med. Chem. 1983; 26(4)602–604
  • Hussain A., Truelove J.E. Prodrug Approaches to Enhancement of Physicochemical Properties of Drugs. IV. Novel Epinephrine Prodrug. J. Pharm. Sci. 1976; 65(10)1510–1512
  • Valcavi U., Caponi, Carsi B., Innocenti S., Martelli P., Minoja F. Synthesis and Biological Activity of Digitoxigenin Amino Esters. Farm. Ed. Sci. 1981; 36(11)971–982
  • Brazzell R.K., Kostenbauder H.B. Isolated Perfused Rabbit Lung as a Model for Intravascular and Intrabronchial Administration of Bronchodilator Drugs. Isoproferenal Prodrugs. J. Pharm. Sci. 1982; 71(11)1274–1281
  • Maksay G., Tegyey Z., Kemeny V., Lukovits I., Otvos L., Palosi E. Oxazepam Esters. 2. Correlation of Hydrophobicity with Serum Binding, Brain Penetration, and Excretion. J. Med. Chem. 1979; 22(12)1436–1443
  • Maksay G., Palosi E., Tegyey Z., Otvos L. Oxazepam Esters. 3. Intrinsic Activity, Selectivity, and Prodrug Effect. J. Med. Chem. 1981; 24(5)499–502
  • Simon-Trompler E., Maksay G., Lukovits I., Volford J., Otvos L. Lorazepam and Oxazepam Esters. Hydrophobicity, Hydrolysis Rates and Brain Appearance. Arzneim.-Forsch. 1982; 32(2)102–105
  • Nudelman A., McCaully R.J., Bell S.C. Water-Derivatives of 3-Oxy-Substituted 1,4-Benzodiazepines. J. Pharm. Sci. 1974; 63(12)1880–1885
  • Yalkowsky S.H., Davis E., Clark T. Stabilization of Aspartame in Water: Organic Solvent Mixtures with Different Dielectric Constants. J. Pharm. Sci. 1991; 80: 674–676
  • El-Shattawy H.E., Peck G.E., Kildsig D.O. Aspartame-Direct Compression Excipients: Preformulation Stability Screening Using Differential Scanning Calorimetry. Drug Dev. Ind. Pharm. 1981; 7: 605–619
  • Patrunky M., Wollmann H. Stability Testing of Some Drugs Containing Ester Groups: Benzyl Benzoate, Benzyl Mandelate and Propyl Gallate. Part 11: Stability of Drugs and Preparations Containing the Drugs. Zentbl. Pharm. Pharmakother. Labdiagn. 1982; 121(9)851–856
  • Jaminet F., Delattre L., Delporte J.P., Moes A. Influence of Sterilization Temperature and pH on the Stability of Chlorhexidine in Solutions. Pharm. Acta Helv. 1970; 45: 60–63
  • Goodall R.R., Goldman J., Woods J. Stability of Chlorhexidine Solutions. Pharm. J. 1968; 200(5437)33–34
  • Gui-You D., Satoh T. Pharmacokinetic Studies on Propyl Gallate Metabolism in Rats. Res. Commun. Pharmacol. Toxicol. 1999; 4(1–2)27–31
  • Nakagawa Y., Nakajima K., Tayama S., Moldeus P. Metabolism and Cytotoxicity of Propyl Gallate in Isolated Rat Hepatocytes: Effects of a Thiol Reductant and an Esterase Inhibitor. Mol. Pharmacol. 1995; 47(5)1021–1027
  • Grit M., Zuidam N.J., Underberg W.J.M., Crommelin D.J.A. Hydrolysis of Partially Saturated Egg Phosphatidylcholine in Aqueous Liposome Dispersions and the Effect of Cholesterol Incorporation on Hydrolysis Kinetics. J. Pharm. Pharmacol. 1993; 45: 490–495
  • Shija R., Sunderland V.B., McDonald C. Alkaline Hydrolysis of Methyl, Ethyl and n-Propyl 4-Hydroxybenzoate Esters in the Liquid and Frozen States. Int. J. Pharm. 1992; 80(2–3)203–211
  • Khan M.N., Olagbemiro T.O. Kinetic Evidence for the Participation of the Ionized Form of Methyl p-Hydroxybenzoate in its Alkaline Hydrolysis. J. Chem. Res., Synop. 1985, 5: 166–167
  • Sunderland V.B., Watts D.W. Kinetics of the Degradation of Methyl, Ethyl and n-Propyl 4-Hydroxybenzoate Esters in Aqueous Solution. Int. J. Pharm. 1984; 19(1)1–15
  • Trotta F. Phthalic Acid Ester Hydrolysis Under Inverse Phase-Transfer Catalysis Conditions. J. Mol. Catal. 1993; 85(3)L265–L267
  • Kharkharov A.A., Rzhevskaya E.V., Levina L.V. Effect of Disperse Metal Complex Dyes on the Hydrolysis of Propylene Carbonate. Vop. Tekhnol. Tovaroved Izdelii Legk. Prom. 1973; 2: 55–58
  • Nakagaki M., Yokoyama S. Acid-Catalyzed Hydrolysis of Sodium Lauryl Sulfate. J. Pharm. Sci. 1985; 74: 1047–1052
  • Santus G., Baker R.W. Osmotic Drug Delivery: Review of the Patent Literature. J. Control. Release 1995; 35: 1–21
  • , Eastman Chemical Co. Technical Literature: Pharmaceutical Ingredients—Cellulosic Enteric Polymers, 1994.
  • Stafford J.W. Enteric Film Coating Using Completely Aqueous Dissolved Hydroxypropyl Methyl Cellulose Phthalate Spray Solutions. Drug Dev. Ind. Pharm. 1982; 8: 513–530
  • , Shin-Etsu Chemical Co. Ltd. Technical Literature: Hydroxypropyl Methylcellulose Phthalate, 1997.
  • , Shin-Etsu Chemical Co. Ltd. Technical Literature: Hydroxypropyl Methylcellulose Phthalate, 1993.
  • Huikari A., Karlsson A. Viscosity Stability of Methylcellulose Solutions at Different pH and Temperature. Acta Pharm. Fenn. 1989; 98(4)231–238
  • Remunan-Lopez C., Bodmeier R. Mechanical, Water Uptake and Permeability Properties of Crosslinked Chitosan Glutate and Alginate Films. J. Control. Release 1997; 44: 215–225
  • Cohen S., Lobel E., Treygoda A., Peled Y. Novel In Situ-Forming Opthalmic Drug Delivery System from Alginates Undergoing Gelation in the Eye. J. Control. Release 1997; 44: 201–208
  • Baker R.W. Controlled Release of Biologically Active Agents. Wiley, New York 1987
  • , McGinity, J.W., Ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms: Drugs and the Pharmaceutical Sciences; : 1997; Vol. 79.
  • , FMC. Technical Literature: Aquateric, Cellulose Acetate Phthalate Aqueous Enteric Coating, 1983.
  • Ottenbrite R.M., Fadeeva N. Polymer Systems for Biomedical Applications. An overview. ACS Symp. Ser. 1994; 545: 1–14
  • Merkli A., Heller J., Tabatabay C., Gurny R. Purity and Stability Assessment of a Semi-Solid Poly(Ortho Ester) Used in Drug Delivery Systems. Biomaterials 1996; 17: 897–902
  • Hoste K., Schacht E., Seymour L. New Derivatives of Polyglutamic Acid as Drug Carrier Systems. J. Control. Release 2000; 64: 53–61
  • Sweetana S., Akers M.J. Solubility Principles and Practices for Parenteral Drug Dosage Form Development. PDA J. Pharm. Sci. Technol. 1996; 50(5)330–342
  • Gatlin L.A., Gatlin C.A. P.K. Gupta, G.A. BrazeauFormulation and Administration Techniques to Minimize Injection Pain and Tissue Damage Associated with Parenteral Products. Injectable Drug Development, . 1st Ed., Interpharm Press, Denver 1999; 401–422
  • Flynn G.L. Buffers-pH Control Within Pharmaceutical Systems. J. Parenter. Drug Assoc. 1980; 34(2)139–162
  • Parker A.J. Protic-Dipolar Aprotic Solvent Effects on Rates of Bimolecular Reactions. Chem. Rev. 1969; 69(1)1–29
  • Calmon Y.P., Canavy J.L. Solvent Effects on the Kinetics of Alkaline Hydrolysis of Dimethylacetylacetone. Part I. Influence of Alcohol–Water Mixtures. J. Chem. Soc. Perkin II 1972; 706–710
  • Matsos C., Chaimovich H., Lima J.L.F.C., Cuccovia I.M., Reis S. Effect of Liposomes on the Rate of Alkaline Hydrolysis of Indomethacin and Acemetacin. J. Pharm. Sci. 2001; 90(3)298–309
  • Beg A.E., Meakin B.J., Davies D.J.G. Influence of a Cationic Surfactant on the Rate of Hydrolysis of p-Nitrophenyl Acetate in Non-Buffer System. Pharmazie 1980; 35: 161–163
  • Sheth P.B., Parrott E.L. Hydrolysis of Solubilized Esters. J. Pharm. Sci. 1967; 56(8)983–986
  • Mitchell A.G. The Hydrolysis of Propyl Benzoate in Aqueous Solutions of Surface-Active Agents. J. Pharm. Pharmacol. 1964; 16: 43–48
  • Carstensen J.T. J.T. Carstensen, C.T. RhodesSolid State Stability; Incompatibility Prevention Techniques. Drug Stability: Principles and Practices, . 3rd Ed., Marcel Dekker, New York 2000; 171–172
  • , Klockner Pentaplast of America, Inc. Technical literature.
  • , Honeywell International, Inc. Technical literature.
  • , Alcan Packaging, Inc. Technical literature.
  • Allinson J.G., Dansereau R.J., Sakr A. The Effects of Packaging on the Stability of a Moisture Sensitive Compound. Int. J. Pharm. 2001; 221(1–2)49–56
  • Pilchik R. Pharmaceutical Blister Packaging, Part 1, Rationale and Materials. Pharm. Technol. 2000; 68–77, November
  • Forcinio H. Choosing a Blister Material. Pharm. Technol. 2000; 26–30
  • Taborsky C.J., Foster M.G., Lockhart H., Polgar B. Permeation of Unit-Dose Blister Market Containers Under USP and ICH Conditions. Pharm. Technol. 2000; 38–42, August
  • Gerlowski L.E. Water Transport Through Polymers: Requirements and Designs in Food Packaging. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1989; 30(1)15–16
  • Germano A., Lorenzi E., Calvo B., Guerra F. Packaging in Heat-Sealable Materials, and the Stability of Drugs. Boll. Chim. Farm. 1974; 113(10)513–531
  • Dobson R.L. Protection of Pharmaceutical and Diagnostic Products Through Desiccant Technology. J. Packag. Technol. 1987; 1(4)127–131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.