1,997
Views
262
CrossRef citations to date
0
Altmetric
Review

Micron‐Size Drug Particles: Common and Novel Micronization Techniques

& , Ph.D.
Pages 1-13 | Received 23 Jan 2003, Accepted 03 May 2003, Published online: 02 Apr 2004

References

  • Robinson J. R. Recent Advantages in Formulation of Poorly Absorbed Drugs. Current Status on Targeted Drug Delivery to the Gastrointestinal Tract. Capsugel Library. 1993; 59–63
  • Kawashima Y. Nanoparticulate systems for improved drug delivery. Adv. Drug Deliv. Rev. 2001; 47: 1–2
  • Chaumeil J. C. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Find. Exp. Clin. Pharmacol. 1998; 20: 211–215
  • Bisrat M., Nyström C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int. J. Pharm. 1988; 47: 223–231
  • Scholz A., Abrahamsson B., Diebold S. M., Kostewicz E., Polentarutti B. I., Ungell A.‐L., Dressmann J. B. Influence of hydrodynamics and particle size on the absorption of felodipine in labradors. Pharm. Res. 2002; 19: 42–47
  • Oh D.‐M., Curl R. L., Yong C.‐S., Amidon G. L. Effect of micronization on the extent of drug absorption from suspensions in humans. Arch. Pharm. Res. 1995; 18: 427–433
  • Johnson K. C., Swindell A. C. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm. Res. 1996; 13: 1795–1798
  • Timsina M. P., Martin G. P., Marriott C., Ganderton D., Yianneskis M. Drug delivery to the respiratory tract using dry powder inhalers. Int. J. Pharm. 1994; 101: 1–13
  • York P. Powdered raw materials: characterizing batch uniformity. Proc. Respir. Drug Deliv., IV 1994; 83–91
  • Parrott E. L. J. Swarbrick, J. C. BoylanComminution. Encyclopaedia of Pharmaceutical Technology, . Marcel Decker Inc., New York 1990; Vol. 3: 101–121
  • Müller R. H., Peters K., Becker R., Kruss B. Nanosuspensions—a novel formulation for the i.v. administration of poorly soluble drugs. Proc. 1st World Meet. APGI/APV 1995; 491–492
  • Müller R. H., Böhm H. L., Grau M. J. Nanosuspensionen—Formulierungen für schwerlösliche Arzneistoffe mit geringer Bioverfügbarkeit, 2. Mitteilung: Stabilität, biopharmazeutische Aspekte, mögliche Arzneiformen und Zulassungsfragen. Pharm. Ind. 1999; 61: 175–178
  • Müller R. H., Jacobs C., Kayser O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 2001; 47: 2–19
  • Müller R. H., Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size‐reduction technique. Int. J. Pharm. 1998; 160: 229–237
  • Müller R. H., Böhm H. L., Grau M. J. Nanosuspensionen—Formulierungen für schwerlösliche Arzneistoffe mit geringer Bioverfügbarkeit: 1. Herstellung und Eigenschaften. Pharm. Ind. 1999; 61: 74–78
  • Ostrander K. D., Bosch H. W., Bondanza D. M. An in‐vitro assessment of a NanoCrystal™ beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur. J. Pharm. Biopharm. 1999; 48: 207–215
  • Liversidge G. G. Formulation of Oral Gastrointestinal Diagnostic X‐ray Contrast Agents and Oral Gastrointestinal Therapeutic Agents. US Patent No. 5628981, 1997
  • Liversidge G. G., Engers D. A., Roberts M. E., Ruddy S. B., Wong S.‐M., Xu S. Methods of Making Nanocrystalline Formulations of Human Immunodeficiency Virus (HIV) Protease Inhibitors Using Cellulosic Surface Stabilizers. US Patent No. 6068858, 2000
  • De Castro L., Lee R. Injectable Formulations of Nanoparticulate Naproxen. WO Patent No. 00/09096, 2000
  • Kondo N., Iwao T., Masuda H., Yamanouchi K., Ishihara Y., Yamada N., Haga T., Ogawa Y., Yokoyama K. Improved oral absorption of a poorly water‐soluble drug, HO‐221, by wet‐bead milling producing particles in submicron region. Chem. Pharm. Bull. 1993; 41: 737–740
  • Roberts R. J., Rowe R. C., York P. The relationship between indentation hardness of organic solids and their molecular structure. J. Mater. Sci. 1994; 29: 2289–2296
  • Liversidge G. G., Cundy K. C., Bishop J. F., Czekai D. A. Surface Modified Drug Nanoparticles. US Patent No. 5145684, 1992
  • Wong S. M. Sugar Base Surfactant for Nanocrystals. US Patent No. 5622938, 1997
  • Musaeus J. N., Vilstrup P., Winning M. Process of Preparing a Water Dispersible Hydrophobic or Aerophilic Solid. WO Patent No. 9106292, 1991
  • Wiedmann T. S., Wood R. W., DeCastro L. Aerosols Containing Beclomethazone Nanoparticle Dispersions. US Patent No. 5747001, 1998
  • De Villiers M. M. Influence of cohesive properties of micronized drug powders on particle size analysis. J. Pharm. Biomed. Anal. 1995; 13: 191–198
  • De Villiers M. M., Tiedt L. R. An analysis of fine grinding and aggregation of poorly soluble drug powders in a vibrating ball mill. Pharmazie 1996; 51: 564–567
  • Saleki‐Gerhardt A., Ahlneck C., Zografi G. Assessment of disorder in crystalline solids. Int. J. Pharm. 1994; 101: 237–247
  • York P., Ticehurst M. D., Osborn J. C., Roberts R. J., Rowe R. C. Characterization of the surface energetics of milled dl‐propanolol hydrochloride using inverse gas chromatography and molecular modelling. Int. J. Pharm. 1998; 174: 179–186
  • Ticehurst M. D., Basford P. A., Dallman C. I., Lukas T. M., Marshall P. V., Nichols G., Smith D. Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide. Int. J. Pharm. 2000; 193: 247–259
  • Newell H. E., Buckton G., Butler D. A., Thielmann F., Williams D. R. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose. Pharm. Res. 2001; 18: 662–666
  • Grimsey I. M., Feeley J. C., York P. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. J. Pharm. Sci. 2002; 91: 571–583
  • Mackin L., Sartnurak S., Thomas I., Moore S. The impact of low levels of amorphous material (< 5%) on the blending characteristics of a direct compression formulation. Int. J. Pharm. 2002; 231: 213–226
  • Elamin A. A., Sebhatu T., Ahlneck C. The use of amorphous model substances to study mechanically activated materials in the solid state. Int. J. Pharm. 1995; 119: 25–36
  • Steckel H., Rasenack N., Müller B. W. In vitro characterization of jet‐milled and in‐situ‐micronized fluticasone‐17‐propionate. Int. J. Pharm. 2003; 258: 65–75
  • Briggner L.‐E., Buckton G., Bystrom K., Darcy P. The use of isothermal microcalorimetry in the study of changes in crystallinity induced during the processing of powders. Int. J. Pharm. 1994; 105: 125–135
  • Buckton G. Characterisation of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Adv. Drug Deliv. Rev. 1997; 26: 17–27
  • Ward G. H., Schultz R. K. Process‐induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm. Res. 1995; 12: 773–779
  • Buckton G., Choularton A., Beezer A. E., Chatham S. M. The effect of the comminution technique on the surface energy of a powder. Int. J. Pharm. 1988; 47: 121–128
  • Mestl G., Herzog B., Schlögl R., Knözinger H. Mechanically activated MoO3. 1. Particle size, crystallinity, and morphology. Langmuir 1995; 11: 3027–3034
  • Mestl G., Verbruggen N. F.D., Knözinger H. Mechanically activated MoO3. 2. Characterization of defect structures. Langmuir 1995; 11: 3035–3041
  • Florence S. T., Salole E. G. Changes in crystallinity and solubility on comminution of digoxin and observations on spironolactone and estradiol. J. Pharm. Pharmacol. 1976; 28: 637–642
  • Elamin A. A., Ahlneck C., Alderborn G., Nyström C. Increased metastable solubility of milled griseofulvin, depending on the formation of a disordered surface structure. Int. J. Pharm. 1994; 111: 159–170
  • Mosharraf M., Sebhatu T., Nyström C. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs. Int. J. Pharm. 1999; 177: 29–51
  • Yamamoto K., Nakano M., Arita T., Nakai Y. Dissolution rate and bioavailabity of griseofulvin from a ground mixture with microcrystalline cellulose. J. Pharmacokinet. Biopharm. 1974; 2: 487
  • Yamamoto K., Nakano M., Arita T., Takayama Y., Nakai Y. Dissolution behaviour of phenytoin from a ground mixture with microcrystalline cellulose. J. Pharm. Sci. 1976; 65: 1484–1488
  • Feeley J. C., York P., Sumby B. S., Dicks H. Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisation. Int. J. Pharm. 1998; 172: 89–96
  • Joshi V., Dwivedi S., Ward G. H. Increase in the specific surface area of budesonide during storage postmicronization. Pharm. Res. 2002; 19: 7–12
  • Waltersson J. O., Lundgren P. The effect of mechanical comminution on drug stability. Acta Pharm. Suec. 1985; 22: 291–300
  • Kitamura S., Miyamae A., Koda S., Morimoto Y. Effect of grinding on the solid‐state stability of cefixime trihydrate. Int. J. Pharm. 1989; 56: 125–134
  • Horn D., Rieger J. Organische Nanopartikel in wässriger Phase—Theorie, Experiment und Anwendung. Angew. Chem. 2001; 113: 4460–4492
  • Allemann E., Gurny R., Doelker E. Preparation of aqueous polymeric nanodispersions by a reversible salting‐out process: influence of process parameters on particle size. Int. J. Pharm. 1992; 87: 247–253
  • Ruch F., Matijevic E. Preparation of micrometer size budesonide particles by precipitation. J. Colloid Interface Sci. 2000; 229: 207–211
  • Reetz M. T., Helbig W. Size‐selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 1994; 116: 7401–7402
  • Becker J. A., Schäfer R., Festag R., Ruland W., Wendorff J. H., Pebler J., Quaiser S. A., Helbig W., Reetz M. T. Electrochemical growth of superparamagnetic cobalt clusters. J. Chem. Phys. 1995; 103: 2520–2527
  • Reetz M. T., Quaiser S. A. Eine neue Methode zur Herstellung nanostrukturierter Metallcluster. Angew. Chem. 1995; 107: 2461–2463
  • Becker J. A., Schäfer R., Festag J. R., Wendorff J. H., Hensel F., Pebler J., Quaiser S. A., Helbig W., Reetz M. T. Magnetic properties of cobalt‐cluster dispersions generated in an electrochemical cell. Surf. Rev. Lett. 1996; 3: 1121–1126
  • Privman V., Goia D. V., Park J., Matijevic E. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J. Colloid Interface Sci. 1999; 213: 36–45
  • DAB 9. Deutsches Arzneibuch (German Pharmacopoeia)9th Ed. 1986, Deutscher Apothekerverlag Stuttgart, Govi Verlag GmbH Frankfurt
  • Corrigan O. I., Holohan E. M., Sabra K. Amorphous forms of thiazide diuretics prepared by spray‐drying. Int. J. Pharm. 1984; 18: 195–200
  • Sebhatu T., Angberg M., Ahlneck C. Assessment of the degree of disorder in crystalline solids by isothermal microcalorimetry. Int. J. Pharm. 1994; 104: 135–144
  • Vidgrén M. T., Vidgrén P. A., Paronen T. P. Comparison of physical and inhalation properties of spray‐dried and mechanically micronized disodium cromoglycate. Int. J. Pharm. 1987; 35: 139–144
  • Chawla A., Taylor K. M.G., Newton J. M., Johnson M. C.R. Production of spray‐dried salbutamol sulphate for use in dry powder aerosol formulations. Int. J. Pharm. 1994; 108: 233–240
  • Chew N. Y.K., Bagster D. F., Chan H.‐K. Effect of particle size, air flow and inhaler device on the aerosolisation of disodium cromoglycate powders. Int. J. Pharm. 2000; 206: 75–83
  • Loth H., Hemgesberg E. Properties and dissolution of drugs micronized by crystallization from supercritical gases. Int. J. Pharm. 1986; 32: 265–276
  • York P. Strategies for particle design using supercritical fluid technologies. PSTT 1999; 2(11)430–440
  • Kerc J., Srcic S., Knez Z., Sencar‐Bozic P. Micronization of drugs using supercritical carbon dioxide. Int. J. Pharm. 1999; 182: 33–39
  • Steckel H., Thies J., Müller B. W. Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide. Int. J. Pharm. 1997; 152: 99–110
  • Moshashaée S., Bisrat M., Forbes R. T., Nyquist H., York P. Supercritical fluid processing of proteins I: Lysozyme precipitation from organic solution. Eur. J. Pharm. Sci. 2000; 11: 239–245
  • Matson D. W., Fulton J. L., Peterson R. C., Smith R. D. Rapid expansion of supercritical fluid solutions: solute formulation of powders, thin films and fibers. Ind. Eng. Chem. Res. 1987; 26: 2298–2306
  • Türk M., Hils P., Helfgen B., Schaber K., Martin H.‐J., Wahl M. A. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J. Supercrit. Fluids 2002; 22: 75–84
  • Tom J. W., Debenedetti P. G., Jerome R. Precipitation of poly (L‐lactic acid) and composite poly (L‐lactic acid)‐pyrene particles by rapid expansion of supercritical solution. J. Supercrit. Fluids 1994; 7: 9–29
  • Lele A. K., Shine A. D. Effect of RESS dynamics on polymer morphology. Ind. Eng. Chem. Res. 1994; 33: 1476–1485
  • Müller B. W., Fischer W. Verfahren zur Herstellung einer mindestens einen Wirkstoff und einen Träger umfassenden Zubereitung. German Patent Application DE 3744329A1, 1989
  • Gallagher P. M., Coffey M. P., Krukonis V. J., Klasutis N. K. P. Johnston, J. M.L. PenningerGas antisolvent recrystallization: new process to recrystallize compounds insoluble in supercritical fluids. Supercritical Science and Technology, . ACS Symposium Series, Washington, DC 1989; Vol. 406: 334–354
  • Dixon D. J., Johnston K. P., Bodmeier R. A. Polymeric materials formed by precipitation with a compressed fluid antisolvent. AIChE J. 1993; 39(1)127–139
  • Yeo S.‐D., Debenedetti P. G., Radosz M., Schmidt H.‐W. Supercritical antisolvent process for substituted para‐linked aromatic polyamides: phase equilibrium and morphology study. Macromolecules 1993; 26: 6207–6210
  • Tachibana T., Nakamura A. A method for preparing an aqueous colloidal dispersion of organic materials by using water‐soluble polymers: dispersion of beta‐carotine by polyvinylpyrrolidone. Kolloid‐Z. Polym. 1965; 203: 130–133
  • List M., Sucker H. Pharmaceutical colloidal hydrosols for injection. GB Patent No. 2200048A, 1988
  • Gaßmann P., Sucker H. Improvements in Pharmaceutical Compositions. WO Patent No. 92/18105, 1992
  • Gaßmann P., List M., Schweitzer A., Sucker H. Hydrosols—alternatives for the parenteral application of poorly water soluble drugs. Eur. J. Pharm. Biopharm. 1994; 40: 64–72
  • Gust R., Bernhardt G., Spruß T., Krauser R., Koch M., Schönenberger H., Bauer K. H., Schertl S., Lu Z. Development of a parenterally administrable hydrosol preparation of the “third generation platinum complex”: part 1. Preparation and studies on the stability and antitumor activity. Arch. Pharm. (Weinh.) 1995; 328: 645–653
  • Horn D., Schmidt H. W., Ditter W., Hartmann H., Lueddecker E., Schmieder K. Verfahren zur Herstellung von feinverteilten, pulverförmigen Carotenoid‐bzw. Retinoidpräparaten. EP Patent No. 0065193A2, 1982
  • Horn D. Preparation and characterisation of microdisperse bioavailable carotenoid hydrosols. Angew. Makromol. Chem. 1989; 166/167: 139–153
  • Auweter H., Bohn H., Haberkorn H., Horn D., Lüddecke E., Rauschenberger V. Herstellung von pulverförmigen, kaltwasserdispergierbaren Carotenoid‐Zubereitungen und die Verwendung der neuen Carotenoid‐Zubereitungen. DE Patent No. 19637517A1, 1996
  • Rouchotas C., Cassidy O. E., Rowley G. Comparison of surface modification and solid dispersion techniques for drug dissolution. Int. J. Pharm. 2000; 195: 1–6
  • Pozarnsky G. A., Matijevic E. Preparation of monodisperse colloids of biologically active compounds: 1. Naproxen. Colloids Surf., A Physicochem. Eng. Asp. 1997; 125: 47–52
  • Cathrein E., Stein H., Stoller H. J., Viardot K. Process for the Production of Carotenoid Preparations. EP Patent No. 0410236, 1991
  • Rasenack N., Müller B. W. Dissolution rate enhancement by in‐situ‐micronization of poorly water‐soluble drugs. Pharm. Res. 2002; 19: 1896–1902
  • Rasenack N., Steckel H., Müller B. W. Micronization of anti‐inflammatory drugs for pulmonary delivery by a controlled crystallization process. J. Pharm. Sci. 2003; 92: 35–44
  • Rasenack N., Hartenhauer H., Müller B. W. Microcrystals for dissolution rate enhancement of poorly water‐soluble drugs. Int. J. Pharm. 2003; 254: 137–145
  • Steckel H., Rasenack N., Müller B. W. In‐situ‐micronization of disodium cromoglycate for pulmonary delivery. Eur. J. Pharm. Biopharm. 2003; 55: 173–180
  • Chang S. A., Gray D. G. The surface tension of aqueous hydroxypropyl cellulose solutions. J. Colloid Interface Sci. 1978; 67: 225–265
  • Daniels R., Barta A. Pharmacopoeial cellulose ethers as oil‐in‐water emulsifiers. I. Interfacial properties. Eur. J. Pharm. Biopharm. 1994; 40: 128–133
  • Rasenack N., Steckel H., Müller B. W. In‐situ‐micronization of drugs: improvement of pulmonary dosage forms. Proc. Drug Deliv. Lungs XIII 2002; 75–78
  • Chen X., Young T. J., Sarkari M., Williams R. O., III, Johnston K. P. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int. J. Pharm. 2002; 242: 3–14
  • Sarkari M., Brown J., Chen X., Swinnea S., Williams R. O., III, Johnston K. P. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int. J. Pharm. 2002; 243: 17–31
  • Rogers T. L., Hu J., Yu Z., Johnston K. P., Williams R. O., III. A novel particle engineering technology: Spray freezing into liquid. Int. J. Pharm. 2002; 242: 93–100
  • Yu Z., Rogers T. L., Hu J., Johnston K. P., Williams R. O., III. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur. J. Pharm. Biopharm. 2002; 54: 221–228

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.