439
Views
87
CrossRef citations to date
0
Altmetric
Research Article

Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels

, , &
Pages 443-452 | Published online: 11 Jan 2004

References

  • Stricker H. Physikalische Pharmazie3rd Ed. Wissenschaftliche Verlagsgesellschaft GmbH, Stuttgart 1998
  • Sunkara G., Kompella U. B. Drug delivery applications of supercritical fluid technology. Drug Deliv. Technol. 2002; 2: 44–50
  • Charoenchaitrakool M., Dehghani F., Foster N. R., Chan H. K. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water‐soluble pharmaceuticals. Ind. Eng. Chem. Res. 2000; 39: 4794–4802
  • Warwick B., Dehghani F., Foster N. R., Biffin J. R., Regtop H. L. Synthesis, purification, and micronization of pharmaceuticals using the gas antisolvent technique. Ind. Eng. Chem. Res. 2000; 39: 4571–4579
  • Rasenack N., Mueller B. W. Dissolution rate enhancement by in situ micronization of poorly water‐soluble drugs. Pharm. Res. 2002; 19: 1894–1900
  • A. M. Hillery, A. Wilboy, J. SwarbrickDrug Delivery and Targeting, . Taylor & Francis. 2001
  • Yang K. Y., Glemza R., Jarowski C. I. Effects of amorphous silicon dioxides on drug dissolution. J. Pharm. Sci. 1979; 68: 560–565
  • Monkhouse D. C., Lach J. L. Use of adsorbents in enhancement of drug dissolution. I and II. J. Pharm. Sci. 1972; 61: 1431–1441
  • Abdallah H. Y., Khalafallah N., Khalil S. A. Influence of dispersion method on particle‐size and dissolution of griseofulvin‐silicon dioxide triturations. Drug Dev. Ind. Pharm. 1983; 9(5)795–808
  • Carli F., Colombo I. Physical state of drug loaded into silica gel carriers. Acta Pharm. Jugosl. 1988; 38: 361–371
  • Watanabe T., Wakiyama N., Usui F., Ikeda M., Isobe T., Senna M. Stability of amorphous indomethacin compounded with silica. Int. J. Pharm. 2001; 226: 81–91
  • Watanabe T., Ohno I., Wakiyama N., Kusal A., Senna M. Controlled dissolution properties of indomethacin by compounding with silica. Stp Pharm. Sci. 2002; 12: 363–367
  • Watanabe T., Hasegawa S., Wakiyama N., Kusai A., Senna M. Comparison between polyvinylpyrrolidone and silica nanoparticles as carriers for indomethacin in a solid state dispersion. Int. J. Pharm. 2003; 250: 283–286
  • Valett‐Regi M., Ramila A., del Real R. P., Perez‐Pariente. Influence of pore size of MCM‐41 Matrices on drug delivery rate. J. Chem. Mater. 2001; 13: 308
  • Horcajada P., Ramila A., Perez‐Pariente J., Valett‐Regi M. Microporous and mesoporous. Mat 2004; 68: 105–109
  • J. FrickeAerogels, . Springer, Berlin 1986
  • Husing N., Schubert U. Organofunctional silica aerogels. J. Sol‐Gel Sci. Technol. 1997; 8: 807–812
  • Husing N., Schubert U., Misof K., Fratzl P. Formation and structure of porous gel networks from Si(OMe)(4) in the presence of A(CH2)(n)Si(OR)(3) (A = Functional Group). Chem. Mater. 1998; 10: 3024–3032
  • , Offenlegungsschrift DE 19653758 A1, issued on 12.1996
  • El Rassy H., Buisson P., Bouali B., Perrard A., Pierre A. C. Surface characterization of silica aerogels with different proportions of hydrophobic groups, dried by the CO2 supercritical method. Langmuir 2003; 19: 358–363
  • Lee K. H., Kim S. Y., Yoo K. P. Low‐density, hydrophobic aerogels. J. Non‐Cryst. Solids 1995; 186: 18–22
  • Pauthe M., Despetis F., Phalippou J. Hydrophobic silica CO2 aerogels. J. Non‐Cryst. Solids 1993; 155: 110–114
  • Rao A. V., Kalesh R. R., Amalnerkar D. P., Seth T. Synthesis and characterization of hydrophobic TMES/TEOS based silica aerogels. J. Porous Mater. 2003; 10: 23–29
  • Schwertfeger F., Zimmermann A., Krempel H. Use of Inorganic Aerogels in Pharmacy. U.S. Patent 6,280,744, 2001
  • Berg A., Droege M. W., Fellmann J. D., Klaveness J., Rongved P. Medical Use of Organic Aerogels and Biodegradable Organic Aerogels. WO Patent 95/01165, 1995
  • Lee K., Gould G. Aerogel Powder Therapeutic Agents. WO Patent 02/051389 A2, 2001
  • Ayers M. R., Hunt A. J. Synthesis and properties of chitosan‐silica hybrid aerogels. J. Non‐Cryst. Solids 2001; 285: 123–127
  • Basso A., DeMartin L., Ebert C., Gardossi L., Tomat A., Casarci M., Rosi O. L. A novel support for enzyme adsorption: properties and applications of aerogels in low water media. Tetrahedron Lett. 2000; 41: 8627–8630
  • Buisson P., Hernandez C., Pierre M., Pierre A. C. Encapsulation of lipases in aerogels. J. Non‐Cryst. Solids 2001; 285: 295–302
  • Power M., Hosticka B., Black E., Daitch C., Norris P. Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J. Non‐Cryst. Solids 2001; 285: 303–308
  • Wallace J. M., Rice J. K., Pietron J. J., Stroud R. M., Long J. W., Rolison D. R. Silica nanoarchitectures incorporating self‐organized protein superstructures with gas‐phase bioactivity. Nano Lett. 2003; 3: 1463–1467
  • Smirnova I., Arlt W. Synthesis of silica aerogels: influence of the supercritical CO2 on the sol‐gel process. J. Sol‐Gel Sci. Technol. 2003; 28(2)175–184
  • FIP Guidelines for Dissolution Testing of Solid Oral Products. Final Draft. Drug Inf. J. 1996; 30: 1071–1084
  • Bartle K. D., Clifford A. A., Jafar S. A., Shilstone G. F. Solubilities of solids and liquids of low volatility in supercritical CO2. J. Phys. Chem. Ref. Data 1991; 20: 713–756
  • Vandana V., Teja A. S. The solubility of paclitaxel in supercritical CO2 and N2O. Fluid Phase Equilib. 1997; 135: 83–88
  • Vetere A. A short‐cut method to predict the solubilities of solids in supercritical carbon dioxide. Fluid Phase Equilib. 1998; 148: 83–93
  • Stassi A., Bettini R., Gazzaniga A., Giordano F., Schiraldi A. Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions. J. Chem. Eng. Data 2000; 45(2)161–165
  • Domingo C., Garcia‐Carmona J., Fanovich M. A., Llibre J., Rodriguez‐Clemente R. Single‐ or two‐solute adsorption process at supercritical conditions: an experimental study. J. Supercrit. Fluids 2001; 21: 147–157
  • Magnan C., Bazan C., Charbit F., Joachim J., Charbit G. Ph. Rudolph, Ch. TreppImpregnation of porous substrate with active substances by means of supercritical fluids. High Pressure Chemical Engineering, . Elsevier. 1996; 509–514
  • K. FloreyAnalytical Profiles of Drug Substances: Ketoprofen, . Academic Press. 1981; Vol. 10: 443–471
  • K. FloreyAnalytical Profiles of Drug Substances: Griseofulvin, . Academic Press. 1979; Vol. 8: 218–249
  • Gupta M. K., Vanwert A., Bogner R. H. Formation of physically stable amorphous drugs by millig with neusilin. J. Pharm. Sci. 2003; 92: 536–551
  • , Food and Drug Administration. HHS. § 436.317, 21 CFR Ch.1, 1998
  • Atkinson R. M., Bedford C., Child K. J., Tomich E. G. Effect of particle size on blood griseofulvin‐levels in man. Nature 1962; 193: 4815–4816
  • Türk M., Hils P., Helfgen B., Schaber K., Martin H. J., Wahl M. A. Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS). J. Supercrit. Fluids 2002; 22: 75–84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.