32
Views
1
CrossRef citations to date
0
Altmetric
Research Article

THE USE OF ELECTROPHYSIOLOGY TO IMPROVE UNDERSTANDING OF DRUG-RECEPTOR INTERACTIONS

&
Pages 191-214 | Published online: 31 Aug 2001

REFERENCES

  • Alexander S. P.H., Peters J. A. Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 1997; 1–84
  • Mishina M., Kurosaki T., Tobimatsu T., Morimoto Y., Noda M., Yamamoto T., Terao M., Lindstrom J., Takahashi T., Kuno M., Numa S. Expression of functional acetylcholine receptor from cloned cDNAs. Nature 1984; 307: 604–608
  • Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 1986; 319: 368–374
  • Goldman D., Deneris E., Kochhar A., Patrick J., Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 1987; 48: 965–973
  • Deneris E., Connolly J., Boulter J., Wada K., Wada E., Swanson L., Patrick J., Heinemann S. Identification of a cDNA coding for a subunit common to distinct acetylcholine receptors. Neuron 1988; 1: 45–54
  • Nef P., Onesyer C., Alliod C., Couturier S., Ballivet M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 1988; 7: 595–601
  • Schoepfer R., Whiting P., Esch F., Blacher R., Shimasaki S., Lindstrom J. cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron 1988; 1: 241–248
  • Boulter J., Connolly J. G., Deneris E., Goldman D., Heinemann S., Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. USA 1987; 84: 7763–7767
  • Boulter J., Oapos;Shea-Greenfield A., Duvoisin R. M., Connolly J. G., Wada E., Jensen A., McKinnon D., Ballivet M., Deneris E. S., Heinemann S., Patrick J. Three members of the rat neuronal nicotinic acetylcholine receptor gene family form a gene cluster. J. Biol. Chem. 1990; 265: 4472–4482
  • Couturier S., Erkmann L., Valera S., Rungger D., Bertrand S., Boulter J., Ballivet M., Betrand D. Alpha 5, alpha 3 and non-alpha 3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J. Biol. Chem. 1990; 265: 17560–17567
  • Raimondi E., Rubbiloi F., Moralli D., Chini B., Fornasari D., Tarroni P., DeCarli L., Clementi F. Chromosomal localisation and physical linkage of the genes the human alpha 3, alpha 5 and beta 4 neuronal nicotinic receptor subunits. Genomics 1992; 12: 849–850
  • Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencorse T. A., Seeburg P. H., Barnard E. A. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 1987; 328: 221–227
  • Grenningloh G., Rienitz A., Schmitt B., Methfessel C., Zensen M., Beyreuther K., Gundelfinger E. D., Betz H. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 1987; 328: 221–227
  • Maricq A. V., Peterson A. S., Brake A. J., Myers R. M., Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin gated ion channel. Science 1991; 254: 432–436
  • Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157: 105–132
  • Browning M. D., Rogers S. W. Ligand-gated ion channels and functional regulation by phosphorylation. Regulation of Cellular Signal Transduction Pathways by Desensitization and Amplification, D. R. Sibley, M. D. Housley. Wiley, New York 1994; 167–201
  • Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 1995; 15: 1231–1244
  • Moriyoshi K., Masayuki M., Ishii T., Shigemoto R., Mizuno N., Nakanishi S. Molecular cloning and characterisation of the rat NMDA receptor. Nature 1991; 354: 31–37
  • Hollman M., O'Shea-Greenfield A., Rogers S., Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature 1989; 342: 643–648
  • Hollman M., Maron C., Heinemann S. N-Glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1 subunit. Neuron 1994; 13: 1331–1343
  • Wyszynski M., Lin J., Rao A., Nigh E., Beggs A., Craig A.-M., Sheng M. Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature 1997; 385: 439–442
  • Valera S., Hussy N., Evans R. J., Adami N., North R. A., Suprenant A. M., Buell G. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 1994; 371: 516–519
  • Brake A. J., Wagenbach M. J., Julius D. New structural motif for ligand-gated ion channel defined by an ionotropic ATP receptor. Nature 1994; 371: 519–523
  • North R. A. P2X purinoceptor plethora. Seminars in the Neurosciences 1996; 8: 187–194
  • Lingueglia E., Champigny G., Lazdunski M., Barby P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 1995; 378: 730–733
  • Kaupp U. B., Niidome T., Tanabe T., Terada S., Bonigk W., Stuhmer W., Cook N., Kangawa K., Matsuo H., Hirose T., Miyata T., Numa S. Primary structure and functional expression from complementary cDNA of the rod photoreceptor cyclic GMP-gated channel. Nature 1989; 342: 762–766
  • Microelectrode Techniques: The Plymouth Workshop Hand-book, D. Ogden. 2nd. ed., The Company of Biologists Limited, Cambridge 1987
  • Single Channel Recording, B Sakmann, E Neher. Plenum Press, New York 1983
  • Electrophysiology: A Practical Approach, D I Wallis. Oxford University Press, Oxford 1993
  • Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 260: 799–802
  • Hamill O. P., Marty A., Neher E., Sakmann B. Improved patch clamp techniques for high resolution current recording from cells and cell free patches. Pflugers Arch. 1981; 391: 85–100
  • Wada K., Ballivet M., Boulter J., Connolly J., Wada E., Deneris E., Swanson L. W., Heinemann S., Patrick J. Primary structure and expression of beta-2, a novel subunit of neuronal nicotinic acetylcholine receptors. Science 1988; 240: 330–334
  • Duvoisin R. M., Deneris E. S., Patrick J., Heinemann S. F. The functional diversity of neuronal nicotinic acetylcholine receptors is increased by a novel subunit b4. Neuron 1989; 3: 589–596
  • Leutje C. W., Patrick J. Both α and β subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptor subunit combinations. J. Neurochem. 1991; 55: 632–640
  • Hussy N., Ballivet M., Bertrand D. Agonist and antagonist effects of nicotine on chick neuronal nicotinic receptors are defined by a and b subunits. J. Neurophysiol. 1994; 72: 1317–1326
  • Covernton P. J.O., Kojima H., Sivilotti L. G., Gibb A. J., Colquhoun D. Comparison of neuronal nicotinic receptors in rat sympathetic neurones with subunit pairs expressed in Xenopus oocytes. J. Physiol. 1994; 481: 27–34
  • Cachelin A. B., Rust G. Unusual pharmacology of (+)-tubocurarine with rat neuronal nicotinic acetylcholine receptors containing b4 subunits. Mol. Pharmacol. 1994; 46: 1168–1174
  • Zwart R., Oortgiesen M., Vijverberg H. P.M. Differential modulation of a3b2 and a3b4 neuronal nicotinic receptors expressed in Xenopus oocytes by flufenamic acid and niflumic acid. J. Neurosci. 1995; 15(3)2168–2178
  • Wafford K. A., Bain C. J., Quirk K., McKernan R. M., Wingrove P. B., Whiting P. J., Kemp J. A. A novel allosteric modulatory site on the GABAA receptor b subunit. Neuron 1994; 12: 775–782
  • Ramirez-Latorre J., Yu C. R., Perin F., Karlin A., Role L. Functional contributions of a5 subunit to neuronal acetylcholine receptor channels. Nature 1996; 380: 347–351
  • Leutje C. W., Piattoni M., Patrick J. Mapping of ligand-binding sites of neuronal nicotinic acetylcholine receptor subunits using chimeric α subunits. Mol. Pharmacol. 1993; 44: 657–666
  • Stern-Bach Y., Settler B., Hartley M., Sheppard P. O., O'Hara P. J., Heinemann S. F. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 1994; 13: 1345–1357
  • Eisele J.-L., Bertrand S., Galzi J.-L., Devillers-Thiery A., Changeux J.-P., Bertrand D. Chimeric nicotinic serotonergic receptor combines distinct ligand-binding and channel specificities. Nature 1993; 366: 479–483
  • Bertrand D., Devillers-Thiery A., Revah F., Galzi J.-L., Hussy N., Mulle C., Bertrand S., Mallivet M., Changeux J.-P. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci. USA 1992; 89: 1261–1265
  • Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurones. Nature 1987; 325: 529–531
  • Kuryatov A., Laube B., Betz H., Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 1994; 12: 1291–1300
  • Korpi E. R., Kleingoor C., Helmut K., Seeburg P. H. Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAAreceptor. Nature 1993; 361: 356–359
  • Ffrench-Constant R. H., Rocheleau T. A., Steichen J. C., Chalmers A. E. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 1993; 363: 449–451
  • Kuhse J., Schmieden V., Betz H. A single amino acid exchange alters the pharmacology of neonatal rat glycine receptor subunit. Neuron 1990; 5: 867–873
  • Pillet L., Tremeau O., Ducancel F., Drevet P., Zinn-Justin S., Pinkasfield S., Boulain J. C., Menez A. Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis. J. Biol. Chem. 1993; 268: 909–916
  • Connolly J. G., Boulter J., Heinemann S. a4-2β2 and other nicotinic acetylcholine receptor subtypes as targets of psychoactive and addictive drugs. Br. J. Pharmacol. 1992; 105: 657–666
  • Bertrand D., Ballivet M., Gomez M., Bertrand S., Phannavong B., Gundelfinger E. D. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila α subunits. Eur. J. Neurosci. 1994; 6: 869–875
  • Gibb A. J., Kojima H., Carr J. A., Colquhoun D. Expression of cloned receptor subunits produces multiple receptors. Proc. R. Soc. Lond. B 1990; 242: 108–112
  • Sine S. M., Steinbach J. H. Activation of acetylcholine receptors on clonal mammalian BC3H1 cells by high concentrations of agonist. J. Physiol. 1987; 385: 325–359
  • Anand R., Peng X., Lindstrom J. Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. Fed. Eur. Biochem. Soc. 1993; 327(2)241–246
  • Sivilotti L. G., McNeil D. K., Lewis T. M., Nassar M. A., Schoepfer R., Colquhoun D. Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour. J. Physiol. 1997; 500: 123–138
  • Evans R. J., Kennedy C. Characterisation of P2-purinoceptors in the smooth muscle of the rat tail artery: a comparison between contractile and electrophysiological responses. Br. J. Pharmacol. 1993; 113: 853–860
  • Kennedy C., Leff P. How should P2x-purinoceptors be characterised pharmacologically?. Trends Pharmacol. Sci. 1995; 16: 168–174
  • Drasdo A., Caulfield M., Bertrand D., Bertrand S., Wonnacott S. Methyllycaconitine: a novel nicotinic antagonist. Mol. Cell. Neurosci. 1992; 3(3)237–243
  • Alkondon M., Pereira E. F.R., Wonnacott S., Albuquerque E. X. Blockade of nicotinic currents in hippocampal neurons defines methyllcaconitine as a potent and specific receptor antagonist. Mol. Pharmacol. 1992; 41: 802–808
  • Cook S. P., Vulchanova L., Hargreaves K. M., Elde R., McCleskey E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 1997; 387: 505–508
  • Kennedy C., Leff P. Painful connection for ATP. Nature 1995; 377: 385–386
  • Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from synaptically connected neurones of the mammalian central nervous system. Pflugers Arch. 1989; 414: 600–612
  • Allen T. G.J. The sniffer-patch technique for detection of neurotransmitter release. Trends Neurosci. 1997; 20: 192–198
  • Connolly J. G., Gibb A., Colquhoun D. Multiple subtypes of large conductance neuronal nicotinic acetylcholine receptors studied in thin slices of rat medial habenula. J. Physiol. 1995; 484(1)87–105
  • Clarke P. B.S., Schwarz R. D., Paul S. M., Pert C. B., Pert A. Nicotinic binding in the rat brain. Autoradiographic comparison of [3H]-acetylcholine, [3H]-nicotine and [125I]-alpha-bungarotoxin. J. Neurosci. 1985; 5: 1307–1315
  • McCormick D. A., Prince D. A. Acetylcholine causes rapid nicotinic excitation in the medial habenular nucleus of guinea pig, in vitro. J. Neurosci. 1987; 7: 742–752
  • Mulle C., Changeux J.-P. A novel type of nicotinic receptor characterised in the rat central nervous system by patch clamp techniques. J. Neurosci. 1990; 10: 169–175
  • Mulle C., Vidal C., Benoit P., Changeux J.-P. Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J. Neurosci. 1991; 11: 2588–2597
  • Mulle C., Choquet D., Korn H., Changeux J.-P. Calcium influx through nicotinic receptor rat central neurons: its relevance to cellular regulation. Neuron 1992; 8: 135–143
  • Mulle C., Lena C., Changeux J.-P. Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 1992; 8: 937–945
  • Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., Swanson L. W. The distribution of alpha2, alpha3, alpha4 and beta2 neuronal nicotinic acetylcholine receptor subunit mRNAs in the central nervous system: a hybridisation histochemical study in the rat. J. Comp. Neurol. 1988; 284: 314–335
  • Seguela P., Wadiche J., Dinely-Miller K., Dani J. A., Patrick J. W. Molecular cloning, function properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to Ca++. J. Neurosci. 1993; 13: 596–604
  • Deneris E. S., Connolly J. G., Rogers S. W., Duvoisin R. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 1991; 12: 32–40
  • Gray R., Rajamn A. S., Radcliffe K. A., Yakehiro M., Dani J. A. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 1996; 383: 713–716
  • McGehee D. S., Heath M. J.S., Gelber S., Devay P., Role L. W. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269: 1692–1696
  • Ullian E. M., Sargent P. Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum. J. Neurosci. 1995; 15: 7012–7023
  • Zhang Z.-W, Coggan J. S., Berg D. K. Synaptic currents generated by neuronal acetylcholine receptors sensitive to α-bungarotoxin. Neuron 1996; 17: 1231–1240
  • Criswell H. E., Simson P. E., Duncan G. E., McCown T. J., Herbert J. S., Morrow A. L., Breese G. L. Molecular basis for regionally specific action of ethanol on gamma-amino butyric acid (A) receptors: generalisation to other ligand-gated ion channels. J. Pharmacol. Exp. Ther. 1993; 267: 552–537
  • Frolich R., Patzelt R., Illes P. Inhibition by ethanol of excitatory amino acid receptors and nicotinic acetylcholine receptors in rat locus coeruleus neurons. Naun-Schmied Arch. Pharmacol. 1994; 350: 626–631
  • Leonard S., Adams C., Breese C. R., Adler L. E., Bickfort P., Byerley H. C., Griffith J. M., Miller C., Myles-Worsley M., Nagamoto T., Collins Y., Stevens K. E., Waldo M., Freedman R. Nicotinic receptor function in schizophrenia. Schizophrenia Bull. 1996; 22: 431–445
  • Freedman R., Coon H., Myles Worsley M., OrrUrtreger A., Olincy A., Davis A., Polymeropoulos M., Holik J., Hopkins J., Hoff M., Rosenthal J., Waldo M. C., Reimherr F., Wender P., Yaw J., Young D. A., Breese C. R., Adams C., Patterson D., Adler L. E., Kruglyak L., Leonard S., Byerley W. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl. Acad. Sci. USA 1997; 94: 587–592
  • Rogers S. W., Andrews P. I., Gahring L. C., Whisenand T., Cauley K., Grain B., Hughes T. E., Heinemann S. F., McNamara J. O. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994; 265: 648–651
  • Twyman R. E., Gahring L. C., Spiess J., Rogers S. W. Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron 1995; 14: 755–762
  • Nalbantoglu J., Tirade-Santiago G., Lahsaini A., Poirier J., Goncalves O., Verge G., Momoli F., Weiner S. A., Massicotte G., Julien J.-P., Shapiro M. L. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 1997; 387: 500–505
  • Bliss T. V.P., Collingridge G. L.A. A synaptic model of memory: long term potentiation in the hippocampus. Nature 1993; 361: 31–39

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.