714
Views
71
CrossRef citations to date
0
Altmetric
Research Article

Expression and Function of the Ror‐Family Receptor Tyrosine Kinases During Development: Lessons from Genetic Analyses of Nematodes, Mice, and Humans

, &
Pages 1-15 | Published online: 28 Feb 2003

References

  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103(2)211–225
  • Masiakowski P., Yancopoulos G. D. The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 1998; 8(12)R407
  • Oishi I., Takeuchi S., Hashimoto R., Nagabukuro A., Ueda T., Liu Z.‐J., Hatta T., Akira S., Matsuda Y., Yamamura H., Otani H., Minami Y. Spatio‐temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells 1999; 4(1)41–56
  • Patthy L., Trexler M., Vali Z., Banyai L., Varadi A. Kringles: modules specialized for protein binding. Homology of the gelatin‐binding region of fibronectin with the kringle structures of proteases. FEBS Lett 1984; 171(1)131–136
  • Rehn M., Pihlajaniemi T., Hofmann K., Bucher P. The frizzled motif: in how many different protein families does it occur?. Trends Biochem Sci 1998; 23(11)415–417
  • Saldanha J., Singh J., Mahadevan D. Identification of a Frizzled‐like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases. Protein Sci 1998; 7(8)1632–1635
  • Forrester W. C., Dell M., Perens E., Garriga G. A. C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 1999; 400(6747)881–885
  • Koga M., Take‐uchi M., Tameishi T., Ohshima Y. Control of DAF‐7 TGF‐ expression and neuronal process development by a receptor tyrosine kinase KIN‐8 in Caenorhabditis elegans. Development 1999; 126(23)5387–5398
  • McKay S. E., Hislop J., Scott D., Bulloch A. G., Kaczmarek L. K., Carew T. J., Sossin W. S. Aplysia ror forms clusters on the surface of identified neuroendocrine cells. Mol Cell Neurosci 2001; 17(5)821–841
  • Wilson C., Goberdhan D. C., Steller H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk‐related receptor tyrosine kinases. Proc Natl Acad Sci USA 1993; 90(15)7109–7113
  • Oishi I., Sugiyama S., Liu Z.‐J., Yamamura H., Nishida Y., Minami Y. A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling. J Biol Chem 1997; 272(18)11916–11923
  • Hikasa H., Shibata M., Hiratani I., Taira M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signalling. Development 2002; 129(22)5227–5239
  • Masiakowski P., Carroll R. D. A novel family of cell surface receptors with tyrosine kinase‐like domain. J Biol Chem 1992; 267(36)26181–26190
  • Al‐Shawi R., Ashton S. V., Underwood C., Simons J. P. Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev Genes Evol 2001; 211(4)161–171
  • Matsuda T., Nomi M., Ikeya M., Kani S., Oishi I., Terashima T., Takada S., Minami Y. Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev 2001; 105(1–2)153–156
  • Wiesmann C., Muller Y. A., de Vos A. M. Ligand‐binding sites in Ig‐like domains of receptor tyrosine kinases. J Mol Med 2000; 78(5)247–260
  • Xu Y. K., Nusse R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 1998; 8(12)R405–406
  • Roszmusz E., Patthy A., Trexler M., Patthy L. Localization of disulfide bonds in the frizzled module of Ror1 receptor tyrosine kinase. J Biol Chem 2001; 276(21)18485–18490
  • Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 1985; 41(3)657–663
  • McLean J. W., Tomlinson J. E., Kuang W. J., Eaton D. L., Chen E. Y., Fless G. M., Scanu A. M., Lawn R. M. cDNA sequence of human apolipoprotein is homologous to plasminogen. Nature 1987; 330(6144)132–137
  • Furie B., Furie B. C. The molecular basis of blood coagulation. Cell 1988; 53(4)505–518
  • Nakamura T., Nishizawa T., Hagiya M., Seki T., Shimonishi M., Sugimura A., Tashiro K., Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342(6248)440–443
  • Nakamura T., Aoki S., Kitajima K., Takahashi T., Matsumoto K. Molecular cloning and characterization of Kremen, a novel kringle‐containing transmembrane protein. Biochim Biophys. Acta 2001; 1518(1–2)63–72
  • Mao B., Wu W., Davidson G., Marhold J., Li M., Mechler B. M., Delius H., Hoppe D., Stannek P., Walter C., Glinka A., Niehrs C. Kremen proteins are Dickkopf receptors that regulate Wnt/beta‐catenin signalling. Nature 2002; 417(6889)664–667
  • Cunningham M. E., Stephens R. M., Kaplan D. R., Greene L. A. Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem 1997; 272(16)10957–10967
  • Pawson T. Protein modules and signalling networks. Nature 1995; 373(6515)573–580
  • Sudol M. The WW module competes with the SH3 domain?. Trends Biochem Sci 1996; 21(5)161–163
  • Songyang Z., Shoelson S. E., McGlade J., Olivier P., Pawson T., Bustelo X. R., Barbacid M., Sabe H., Hanafusa H., Yi T., et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB‐2, HCP, SHC, Syk, and Vav. Mol Cell Biol 1994; 14(4)2777–2785
  • Jennings C. G., Dyer S. M., Burden S. J. Muscle‐specific trk‐related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci USA 1993; 90(7)2895–2899
  • Valenzuela D. M., Stitt T. N., DiStefano P. S., Rojas E., Mattsson K., Compton D. L., Nunez L., Park J. S., Stark J. L., Gies D. R., et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 1995; 15(3)573–584
  • DeChiara T. M., Bowen D. C., Valenzuela D. M., Simmons M. V., Poueymirou W. T., Thomas S., Kinetz E., Compton D. L., Rojas E., Park J. S., Smith C., DiStefano P. S., Glass D. J., Burden S. J., Yancopoulos G. D. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 1996; 85(4)501–512
  • Glass D. J., Bowen D. C., Stitt T. N., Radziejewski C., Bruno J., Ryan T. E., Gies D. R., Shah S., Mattsson K., Burden S. J., DiStefano P. S., Valenzuela D. M., DeChiara T. M., Yancopoulos G. D. Agrin acts via a MuSK receptor complex. Cell 1996; 85(4)513–523
  • Gautam M., Noakes P. G., Moscoso L., Rupp F., Scheller R. H., Merlie J. P., Sanes J. R. Defective neuromuscular synaptogenesis in agrin‐deficient mutant mice. Cell 1996; 85(4)525–535
  • Takeuchi S., Takeda K., Oishi I., Nomi M., Ikeya M., Itoh K., Tamura S., Ueda T., Hatta T., Otani H., Terashima T., Takada S., Yamamura H., Akira S., Minami Y. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 2000; 5(1)71–78
  • bioinformatics.weizmann.ac.il/cards/, (accessed Oct 2002)
  • Forrester W. C., Garriga G. Genes necessary for C. elegans cell and growth cone migrations. Development 1997; 124(9)1831–1843
  • DeChiara T. M., Kimble R. B., Poueymirou W. T., Rojas J., Masiakowski P., Valenzuela D. M., Yancopoulos G. D. Ror2, encoding a receptor‐like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 2000; 24(3)271–274
  • Nomi M., Oishi I., Kani S., Suzuki H., Matsuda T., Yoda A., Kitamura M., Itoh K., Takeuchi S., Takeda K., Akira S., Ikeya M., Takada S., Minami Y. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2‐deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol 2001; 21(24)8329–8335
  • Afzal A. R., Rajab A., Fenske C. D., Oldridge M., Elanko N., Ternes‐Pereira E., Tuysuz B., Murday V. A., Patton M. A., Wilkie A. O.M., Jeffery S. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 2000; 25(4)419–422
  • van Bokhoven H., Celli J., Kayserili H., van Beusekom E., Balci S., Brussel W., Skovby F., Kerr B., Percin E. F., Akarsu N., Brunner H. G. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 2000; 25(4)423–426
  • Oldridge M., Fortuna A. M., Maringa M., Propping P., Mansour S., Pollitt C., DeChiara T. M., Kimble R. B., Valenzuela D. M., Yancopoulos G. D., Wilkie A. O.M. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet 2000; 24(3)275–278
  • Schwabe G. C., Tinschert S., Buschow C., Meinecke P., Wolff G., Gillessen‐Kaesbach G., Oldridge M., Wilkie A. O.M., Komec R., Mundlos S. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am J Hum Genet 2000; 67(4)822–831
  • Saito N., Kuba A., Tsuruta T. Lethal form of fibuloulnar a/hypoplasia with renal abnormalities. Am J Med Genet 1989; 32(4)452–456
  • Patton M. A., Afzal A. R. Robinow syndrome. J Med Genet 2002; 39(5)305–310
  • Masuda Y., Sasaki A., Shibuya H., Ueno N., Ikeda K., Watanabe K. Dlxin‐1, a novel protein that binds Dlx5 and regulates its transcriptional function. J Biol Chem 2001; 276(7)5331–5338
  • Salehi A. H., Roux P. P., Kubu C. J., Zeindler C., Bhakar A., Tannis L. L., Verdi J. M., Barker P. A. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor‐dependent apoptosis. Neuron 2000; 27(2)279–288
  • Jordan B. W., Dinev D., LeMellay V., Troppmair J., Gotz R., Wixler L., Sendtner M., Ludwig S., Rapp U. R. Neurotrophin receptor‐interacting mage homologue is an inducible inhibitor of apoptosis protein‐interacting protein that augments cell death. J Biol Chem 2001; 276(43)39985–39989
  • Oh S. P., Li E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev 1997; 11(14)1812–1826
  • Clouthier D. E., Hosoda K., Richardson J. A., Williams S. C., Yanagisawa H., Kuwaki T., Kumada M., Hammer R. E., Yanagisawa M. Cranial and cardiac neural crest defects in endothelin‐A receptor‐deficient mice. Development 1998; 125(5)813–824

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.