19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exposure to Intermittent High Altitude Induces Different Changes in Adenylyl Cyclase Activity in Hearts of Young and Adult Wistar Rats

, , , &
Pages 53-67 | Published online: 28 Feb 2003

References

  • Braunwald E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. New Engl J Med 1997; 337: 1360–1369
  • Hurtado A. Man and altitude. Acta Physiol Lat Am 1973; 23: 430–432
  • Poupa O., Krofta K., Procházka J., Turek Z. Acclimatization to simulated high altitude and acute cardiac necrosis. Fed Proc 1966; 25: 1243–1246
  • Meerson F. Z., Gomazkov G. A., Shimkovich M. V. Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 1973; 31: 30–34
  • Asemu G., Neckář J., Szárszoi O., Papoušek F., Ošt'ádal B. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhytmias in rats. Physiol Res 2000; 49: 597–606
  • Asemu G., Papousek F., Ošt'ádal B., Kolář F. Adaptation to high altitude hypoxia protects the rat heart against ischemia/induced arrhythmias. Involvement of mitochondrial KATPchannel. J Mol Cell Cardiol 1999; 31(10)1821–1831
  • Henley W. N., Belush L. L., Notestine M. A. Reemergence of spontaneous hypertension in hypoxia‐protected rats returned to normoxia as adults. Brain Res 1992; 579: 211–218
  • Meerson F. Z., Ustinova E. E., Manukhina E. B. Prevention of cardiac arrhythmias by adaptation: regulatory mechanisms and cardiotropic effect. Biomed Biochim Acta 1989; 48: 583–588
  • Ošt'ádal B., Ostádalová I., Kolář F., Pelouch V., Dhalla N. S. Cardiac adaptation to chronic hypoxia. Advances in Organ Biology, E. D. Bittar, D. K. Das. JAI Press, Stamford, London 1998; 6: 43–60
  • Ošt'ádal B., Kolár F. Cardiac Ischemia: From Injury to Protection. Kluwer Academic Publishers, Boston, Dordrecht, London 1999; 173
  • Bernstein D., Doshi R., Huang S., Strandness E., Jasper R. Transcriptional regulation of left ventricular beta‐adrenergic receptors during chronic hypoxia. Circ Res 1992; 71: 1465–1471
  • Kacimi R., Richalet J. P., Corsin A., Abousahl I., Crozatier B. Hypoxia‐induced downregulation of beta‐adrenergic receptors in rat heart. J Appl Physiol 1992; 73(4)1377–1382
  • Kacimi R., Richalet J. P., Crozatier B. Hypoxia‐induced differential modulation of adenosinergic and muscarinergic receptors in rat heart. J Appl Physiol 1993; 75(3)1123–1128
  • Kacimi R., Molic J. M., Aldashev A. A., Vatner D. E., Richalet J‐P, Crozatier B. Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am J Physiol 1995; 269: H1865–H1873
  • Maher J. T., Denniston J. C., Wolfe D. L. Mechanism of the attenuated cardiac response to beta‐adrenergic stimulation in chronic hypoxia. J Appl Physiol 1978; 44: 647–651
  • Hynie S., Klenerová V., Caicedo M., Šamánek M. Differences in response to activation of adenylyl cyclase by various stimulants in human myocardium. Mol Cell Biochem 1996; 163/164: 329–333
  • Hynie S., Šamánek M. Myocardial adenylyl cyclase in congenital heart disease and its changes in dependence on oxygenation. Scripta Medica Brno 1996; 67(suppl 2)457–460
  • Šamánek M., Hučín B., Klenerová V., Hynie S. Effects of hypoxia on adenylyl cyclase activity in atria and ventricles of children with congenital heart disease. J Mol Cell Cardiol 1995; 27: A246
  • Bass A., Ošt'ádal B., Procházka J., Pelouch V., Šamánek M., Stejskalová M. Intermittent high altitude—induced changes in energy metabolism in the rat myocardium and their reversibility. Physiol Bohemoslov 1989; 38: 155–161
  • Šamánek M., Bass A., Ošt'ádal B., Hučin B., Stejskalova M. Effect of hypoxaemia on enzymes supplying myocardial energy in children with congenital heart disease. Int J Cardiol 1989; 25: 265–270
  • Hynie S., Šamánek M., Caisedo M., Rožňová L., Hučin B., Vislocky I. The influence of beta‐adrenergic blockers treatment on beta‐adrenergic receptors in the myocardium of children with Tetralogy of Fallot (in Czech). Čas Lék čes 1993; 132: 484–488
  • Movsesian M. A. Beta‐adrenergic receptor agonists and cyclic nucleotide phosphodiesterase inhibitors: shifting the focus from inotropy to cyclic adenosine monophosphate. J Am Coll Cardiol 1999; 34: 318–324
  • Hagiwara M., Brindle P., Harootunian A. T., Armstrong; R., Rivier J., Vale W., Tsien R. Y., Montminy M. R. Coupling of hormonal stimulation and transcription via the cyclic AMP‐responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol 1993; 13: 4852–4859
  • Ošt'ádal B., Kolář F., Pelouch V., Widimsky J. Ontogenic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res 1995; 44: 45–51
  • Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. K. Protein measurement with the Folin‐phenol reagent. J Biol Chem 1951; 193: 265–275
  • Hynie S. Membrane receptors and Transmembrane signalling. Rozpravy Československé Akademie Věd. Academia, Praha 1990; 100
  • Hynie S., Klenerová V. Effects of dimethyl sulfoxide and other dipolar aprotic solvents on rat hepatic adenylate cyclase. Potentiating effects on glucagon and guanylylimidodiphosphate stimulation. Naunyn‐Schmideberg's Arch Pharmacol 1980; 310: 231–236
  • Ramachandran J. A new simple method for separation of adenosine 3′,5′‐cyclic monophosphate from other nucleotides and its use in the assay of adenyl cyclase. Anal Biochem 1971; 43: 227–239
  • Symons R. H. The rapid, simple and improved preparation of high specific activity [32P] dATP and [32P] ATP. Nucleic Acid Res 1977; 4: 4347–4355
  • Myocardial preservation, preconditioning, and adaptation. Ann NY Acad Sci, D. K. Das, R. M. Engelman, K. M. Cherian, New York 1996; 793: 1–533
  • De Cesare D., Fimia G. M., Sassone‐Corsi P. Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem Sci 1999; 24: 281–285
  • Müller F. U., Bokník P., Horst A., Knapp J., Linck B., Schmitz W., Vahlensieck U., Böhm M., Deng M. C., Scheld H. H. CAMP response element binding protein is expressed and phosphorylated in the heart. Circulation 1995; 92: 2041–2043
  • Ou L. C., Chan J., Fior E., Leiter J. C., Brink J. T., Birchard G. F., Clemon G., Smith R. P. Ventilatory and haemopoetic responses to chronic hypoxia in two rat strains. J Appl Physiol 1992; 72: 2354–2363
  • Pissarek M., Bigard X., Mateo P., Guezennec C. Y., Hoerter J. A. Adaptation of cardiac myosin and creatine kinase to chronic hypoxia: role of anorexia and hypertension. Am J Physiol Heart Circ Physiol 1997; 272: H1690–H1695
  • Quinn D. A., Du H. K., Hales C. A. Amiloride analogs inhibit chronic hypoxic pulmonary hypertension. Am J Respir Crit Care Med 1998; 157: 1263–1268
  • Balke C. W., Shorovsky S. R. Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc. Res 1998; 37: 290–299
  • Vescovo G., Harding S. E., Jones M., Dalla L. L., Pessina A. C., Poole W. P.A. Contractile abnormalities of single right ventricular myocytes isolated from rats with right ventricular hypertrophy. J Mol Cell Cardiol 1989; 21(suppl 5)103–111
  • Hynie S., Klenerová V. Heterogeneity of adrenergic receptors. Homeostasis 1998; 38(4)145–156
  • Freedman N. J., Lefkowitz R. J. Desensitization of G protein‐coupled receptors. Rec Prog Horm Res 1996; 5: 319–351
  • Bünemann M., Lee K. B., Pals‐Rylaarsdam R., Roseberry A. G., Hosey M. M. Desensitization of G‐protein‐coupled receptors in the cardiovascular system. Annu Rev Physiol 1999; 61: 169–192
  • Pei J. M., Yu X. C., Fung M. L., Zhou J. J., Cheung C. S., Wong N. S., Leung M. P., Wong T. M. Impaired Gsα and adenylyl cyclase cause β‐adrenoceptor desensitization in chronically hypoxic rat hearts. Am J Physiol Cell Physiol 2000; 279: C1455–C1463
  • Voelkel N. F., Hegstrand L., Reeves J. T., McMurty I. F., Molinoff P. B. Effect of hypoxia on density of beta‐adrenergic receptors. J Appl Physiol 1981; 50: 363–366
  • Sunahara R. K., Dessauer C. W., Gilman A. G. Complexity and diversity of mammalian adenylyl cyclase. Annu Rev Pharmacol Toxicol 1996; 36: 461–480
  • Dzimiri N. Regulation of β‐adrenoceptor signaling in cardiac function and disease. Pharmacol Rev 1999; 51: 465–501
  • Aldashev A. A. High‐altitude pulmonary hypertension and signal transduction in the cardiovascular system. J Recept Transd Res 2000; 20: 255–278
  • Sethi R., Dhalla K. S., Beamish R. E., Dhalla N. S. Differential changes in left and right ventricular adenylyl cyclase activities in congestive heart failure. Am J Physiol 1997; 272: H884–H893
  • Richalet J. P., Kacimi R., Antezana A. M. The control of cardiac chronotropic function in hypobaric hypoxia. Int J Sports Med 1992, suppl 1: S22–S24
  • Kolář F., Ošt'ádal B., Procházka J., Pelouch V., Widimský J. Comparison of cardiopulmomary response to intermitternt high‐altitude hypoxia in young and adult rats. Respiration 1989; 56: 57–62
  • Solomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem 1974; 58: 541–548

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.