489
Views
53
CrossRef citations to date
0
Altmetric
Research Article

Conformational Changes of G Protein‐Coupled Receptors During Their Activation by Agonist Binding

Pages 123-153 | Published online: 10 Jul 2003

References

  • Flower D. R. Modelling G‐protein‐coupled receptors for drug design. Biochim Biophys Acta 1999; 1422(3)207–234
  • Schwartz T. W. Locating ligand‐binding sites in 7TM receptors by protein engineering. Curr Opin Biotech 1994; 5(4)434–444
  • Franke R. R., Konig B., Sakmar T. P., Khorana H. G., Hofmann K. P. Rhodopsin mutants that bind but fail to activate transducin. Science 1990; 250(4977)123–125
  • Franke R. R., Sakmar T. P., Graham R. M., Khorana H. G. Structure and function in rhodopsin. J Biol Chem 1992; 267(21)14767–14774
  • Marin E. P., Krishna A. G., Zvyaga T. A., Isele J., Siebert F., Sakmar T. P. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin‐transducin interaction. J Biol Chem 2000; 275(3)1930–1936
  • Ernst O. P., Meyer C. K., Marin E. P., Henklein P., Fu W. Y., Sakmar T. P., Hofmann K. P. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl‐terminal sequences of transducin α and γ subunits. J Biol Chem 2000; 275(3)1937–1943
  • Hamm H. The many faces of G protein signaling. J Biol Chem 1998; 273(2)669–672
  • Lefkowitz R. J. G Protein‐coupled receptors III. New roles for receptor kinases and β‐arrestins in receptor signaling and desensitization. J Biol Chem 1998; 273(30)18677–18680
  • Luttrell L. M., Ferguson S. S.G., Daaka Y., Miller W. E., Maudsley S., Della Rocca G. J., Lin F. T., Kawakatsu H., Owada K., Luttrell D. K., Caron M. G., Lefkowitz R. J. β‐arrestin‐dependent formation of β2‐adrenergic receptor‐Src protein kinase complexes. Science 1999; 283(5402)655–661
  • Hall R. A., Premont R. T., Chow C. W., Blitzer J. T., Pitcher J. A., Claing A., Stoffel R. H., Barak L. S., Shenolikar S., Weinman E. J., Grinstein S., Lefkowitz R. J. The β2‐adrenergic receptor interacts with the Na+/H+ exchanger regulatory factor to control Na+/H+ exchange. Nature 1998; 392(6676)626–630
  • Brakeman P., Lanahan A. A., O'Brien R., Roche K., Barnes C. A., Huganir R. L., Worley P. F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 1997; 386(6622)284–288
  • Lefkowitz R. J., Pitcher J., Krueger K., Daaka Y. Mechanisms of β‐adrenergic receptor desensitization and resensitization. Adv Pharmacol 1998; 42: 416–420
  • Horn F., Weare J., Beukers M. W., Hörsch S., Bairoch A., Chen W., Edvardsen Ø., Campagne F., Vriend G. GPCRDB: an information system for G protein‐coupled receptors. Nucleic Acids Res 1998; 26(1)277–281
  • Ji T. H., Grossmann M., Ji I. G protein‐coupled receptors I. Diversity of receptor‐ligand interactions. J Biol Chem 1998; 273(28)17299–17302
  • Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high‐resolution electron cryomicroscopy. J Mol Biol 1990; 213(4)899–929
  • Hibert M. F., Trumpp‐Kallmeyer S., Bruinvels A., Hoflack J. Three‐dimensional models of neurotransmitter G‐binding protein‐coupled receptors. Mol Pharmacol 1991; 40(1)8–15
  • Baldwin J. M. The probable arrangement of the helices in G protein‐coupled receptors. EMBO J 1993; 12(4)1693–1703
  • Schertler G. F.X., Villa C., Henderson R. Projection structure of rhodopsin. Nature 1993; 362(6422)770–772
  • Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F.X. Arrangement of rhodopsin transmembrane alpha helices obtained by electron cryo‐microscopy. Nature 1997; 389(6647)203–206
  • Baldwin J. M., Schertler G. F.X., Unger V. M. An alpha‐carbon template for the transmembrane helices in the rhodopsin family of G‐protein‐coupled receptors. J Mol Biol 1997; 272(1)144–164
  • Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamk R. E., Yamamoto M., Miyano M. Crystal structure of rhodopsin: a G protein‐coupled receptor. Science 2000; 289(5480)739–745
  • Teller D. C., Okada T., Behnke C. A., Palczewski K., Stenkamp R. E. Advances in determination of a high‐resolution three‐dimensional structure of rhodopsin, a model of G‐protein‐coupled receptors (GPCRs). Biochemistry 2001; 40(26)7761–7772
  • Okada T., Fujiyoshi Y., Silow M., Navarro J., Landau E. M., Shichida Y. Functional role of internal water in rhodopsin revealed by x‐ray crystallography. Proc Natl Acad Sci USA 2002; 99(9)5982–5987
  • Singh D., Hudson B. S., Middleton C., Birge R. R. Conformation and orientation of the retinyl chromophore in rhodopsin: a critical evaluation of recent NMR data on the basis of theoretical calculation results in a minimum energy consistent with all experimental data. Biochemistry 2001; 40(14)4201–4204
  • Fotiadis D., Liang Y., Filipek S., Saperstein D. A., Engel A., Palczewski K. Rhodopsin dimers in native disc membranes. Nature 2003; 421(6919)127–128
  • Borhan B., Souto M. L., Imai H., Shichida Y., Nakanishi K. Movement of retinal along the visual transduction path. Science 2000; 288(5474)2209–2212
  • Jäger F., Fahmy K., Sakmar T. P., Siebert F. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Biochemistry 1994; 33(36)10878–10882
  • Arnis S., Fahmy K., Hofmann K. P., Sakmar T. P. A conserved carboxylic acid group mediates light‐dependent proton uptake and signaling by rhodopsin. J Biol Chem 1994; 269(39)23879–23881
  • Arnis S., Hofmann K. P. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Proc Natl Acad Sci USA 1993; 90(16)7849–7853
  • Meyer C. K., Böhme M., Ockenfels A., Gärtner W., Hofmann K. P., Ernst O. Signaling states of rhodopsin. J Biol Chem 2000; 275(26)19713–19718
  • Jang G., Kuksa V., Filipek S., Bartl F., Ritter E., Gelb M. H., Hofmann K. P., Palczewski K. Mechanism of rhodopsin activation as examined with ring‐constrained retinal analogs and the crystal structure of the ground state protein. J Biol Chem 2001; 276(28)26148–26153
  • Kuksa V., Bartl F., Maeda T., Jang G., Ritter E., Heck M., Van Hooser J. P., Liang Y., Filipek S., Gelb M. H., Hofmann K. P., Palczewski K. Biochemical and physiological properties of rhodopsin regenerated with 11‐cis‐6‐ring‐ and 7‐ring‐retinals. J Biol Chem 2002; 277(44)42315–42324
  • Lin S. W., Sakmar T. P. Specific tryptophan UV‐absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry 1996; 35(34)11149–11159
  • Altenbach C., Klein‐Seetharaman J., Hwa J., Khorana H. G., Hubbell W. L. Structural features and light‐dependent changes in the sequence 59‐75 connecting helices I and II in rhodopsin: a site‐directed spin‐labeling study. Biochemistry 1999; 38(25)7945–7949
  • Farahbakhsh Z. T., Ridge K. D., Khorana H. G., Hubbell W. L. Mapping light‐dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site‐directed spin‐labeling study. Biochemistry 1995; 34(27)8812–8819
  • Altenbach C., Yang K., Farrnes D. L., Farahbakhsh Z. T., Khorana H. G., Hubbell W. L. Structural features and light‐dependent changes in the cytoplasmic interhelical E‐F loop region of rhodopsin: a site‐directed spin‐labeling study. Biochemistry 1996; 35(38)12470–12478
  • Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid‐body motion of transmembrane helices for light activation of rhodopsin. Science 1996; 274(5288)768–770
  • Dunham T. D., Farrens D. L. Conformational changes in rhodopsin. J Biol Chem 1999; 274(3)1683–1690
  • Cai K., Klein‐Seetharaman J., Hwa J., Hubbell W. L., Khorana H. G. Structure and function in rhodopsin: effects of disulfide cross‐links in the cytoplasmic face of rhodopsin on transducins activation and phosphorylation by rhodopsin kinase. Biochemistry 1999; 38(39)12893–12898
  • Sheikh S. P., Zvyaga T. A., Lichtarge T. P., Sakmar P., Bourne H. R. Rhodopsin activation blocked by metal‐ion‐binding sites linking transmembrane helices C and F. Nature 1996; 383(6598)347–350
  • Altenbach C., Cai K., Klein‐Seetharaman J., Khorana H. G., Hubbell W. L. Structure and function in rhodopsin: mapping light‐dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306–319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry 2001; 40(51)15483–15492
  • Altenbach C., Klein‐Seetharaman J., Cai K., Khorana H. G., Hubbell W. L. Structure and function in rhodopsin: mapping light‐dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60‐75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1. Biochemistry 2001; 40(51)15493–15500
  • Abdulaev N., Ridge K. D. Light induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin. Proc Natl Acad Sci USA 1998; 95(22)12854–12859
  • Krishna A. G., Menon S. T., Terry T. J., Sakmar T. P. Evidence that helix 8 of rhodopsin acts as a membrane‐dependent conformational switch. Biochemistry 2002; 41(26)8298–8309
  • Gether U., Lin S., Kobilka B. K. Fluorescent labeling of purified β2‐adrenergic receptor. J Biol Chem 1995; 270(47)28268–28275
  • Gether U., Lin S., Ghanouni P., Ballesteros J. A., Weinstein H., Kobilka B. K. Agonists induce conformational changes in transmembrane domains III and VI of the β2‐adrenoceptor. EMBO J 1997; 16(22)6737–6747
  • Jensen A. D., Guarnieri F., Rasmussen S. G.F., Asmar F., Ballesteros J. A., Gether U. Agonist‐induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the β2‐adrenergic receptor mapped by site‐selective fluorescent labeling. J Biol Chem 2001; 276(12)9279–9290
  • Ghanouni G., Steenhuis J. J., Farrens D. L., Kobilka B. K. Agonist‐induced conformational changes in the G‐protein‐coupling domain of the β2 adrenergic receptor. Proc Natl Acad Sci USA 2001; 98(11)5997–6002
  • Sheikh S. P., Vilardarga J., Baranski T. J., Lichtarge O., Iiri T., Meng E. C., Nissenson R. A., Bourne H. R. Similar structures and shared switch mechanism of the β2‐adrenoceptor and the parathyroid hormone receptor. J Biol Chem 1999; 274(24)17033–17041
  • Ward S. D.C., Hamdan F. F., Bloodworth L. M., Wess J. Conformational changes that occur during M3 muscarinic acetylcholine receptor activation probed by the use of an in situ disulfide cross‐linking strategy. J Biol Chem 2002; 277(3)2247–2257
  • Struthers M., Yu H., Kono M., Oprian D. D. Tertiary interactions between the fifth and sixth transmembrane segments of rhodopsin. Biochemistry 1999; 38(20)6597–6603
  • Struthers M., Yu H., Oprian D. D. G protein‐coupled receptor activation: analysis of a highly constrained, “straitjacketed” rhodopsin. Biochemistry 2000; 39(27)7938–7942
  • Cohen G. B., Yang T., Robinson P. R., Oprian D. D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 1993; 32(23)6111–6115
  • Rasmussen S. G.G., Jensen A. D., Liapakis G., Ghanouni P., Javitch J. A., Gether U. Mutation of a highly conserved aspartic acid in the β2 adrenergic receptor: constitutive activity, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol 1999; 56(1)175–184
  • Alewijnse A. E., Timmerman H., Jacobs E. H., Smit M. J., Roovers E., Cotecchia S., Leurs R. The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H2 receptor. Mol Pharmacol 2000; 57(5)890–898
  • Scheer A., Fanelli F., Costa T., De Benedetti P. G., Cotecchia S. The activation process of the α1B‐adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc Natl Acad Sci USA 1997; 94(3)808–813
  • Gether U., Ballesteros J. A., Seifert R., Sanders‐Bush E., Weinstein H., Kobilka B. K. Structural instability of a constitutively active G protein‐coupled receptor. J Biol Chem 1997; 272(5)2587–2590
  • Kim J., Altenbach C., Thurmond R. L., Khorana H. G., Hubbell W. L. Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc Natl Acad Sci USA 1997; 94(26)14273–14278
  • Ghanouni P., Schambye H., Seifert R., Lee T. W., Rasmussen S. G.F., Gether U., Kobilka B. K. The effect of pH on β2 adrenoceptor function. J Biol Chem 2000; 275(5)3121–3127
  • Ballesteros J., Kitanovic S., Guarnieri F., Davies P., Fromme B. J., Konvicka K., Chi L., Millar R. P., Davidson J. S., Weinstein H., Sealfon S. C. Functional microdomain in G‐protein‐coupled receptors. J Biol Chem 1998; 273(17)10445–10453
  • Ballesteros J., Jensen A. D., Liapakis G., Rasmussen S. G.F., Shi L., Gether U., Javitch J. A. Activation of the β2‐adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 2001; 276(31)29171–29177
  • Greasley P. J., Fanelli F., Rossier O., Abuin L., Cotecchia S. Mutategensis and modeling of the α1B‐adrenergic receptor highlight the role of the helix 3/helix 6 interface in receptor activation. Mol Pharmacol 2002; 61(5)1025–1032
  • Shapiro D. A., Kristiansen K., Weiner D. M., Kroeze W. K., Roth B. L. Evidence for a model of agonist‐induced activation of 5‐hydroxytryptamine 2A serotonin receptors that involve the disruption of a strong ionic interaction between helices 3 and 6. J Biol Chem 2002; 277(13)11441–11449
  • Huang P., Li J., Chen C., Visiers I., Weinstein H., Liu‐Chen L. Y. Functional role of a conserved motif in TM6 of the rat μ opioid receptor: constitutively active and inactive receptors result from substitutions of Thr6.34(279) with Lys and Asp. Biochemistry 2001; 40(45)13501–13509
  • Huang P., Visiers I., Liu‐Chen L. Y. The local environment at the cytoplasmic end of TM6 of the μ opioid receptor differs from those of rhodopsin and monoamine receptors: introduction of an ionic lock between the cytoplasmic ends of helices 3 and 6 by a L6.30(275)E mutation inactivates the μ opioid receptor and reduces constitutive activity of its T6.34(279)K mutant. Biochemistry 2002; 41(40)11972–11980
  • Robinson P. R., Cohen G. B., Zhukovsky E. A., Oprian D. D. Constitutively actively mutants of rhodopsin. Neuron 1992; 9(4)719–725
  • Befort K., Zilliox C., Fillio D., Yue S., Kieffer B. L. Constitutive activation of the δ opioid receptor by mutations in transmembrane domains III and VII. J Biol Chem 1999; 274(26)18574–18581
  • Porter J. E., Hwa J., Perez D. M. Activation of the α1B‐adrenergic receptor is initiated by disruption of an interhelical salt bridge constraint. J Biol Chem 1996; 271(45)28318–28323
  • Groblewski T., Maigret B., Larguir R., Lombard C., Bonnafous J., Marie J. Mutation of Asn111 in the third transmembrane domain of the AT1a angiotensin II receptor induces its constitutive activation. J Biol Chem 1997; 272(3)1822–1826
  • Han M., Smith S. O., Sakmar T. P. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry 1998; 37(22)8253–8261
  • Fritze O., Filipek S., Kuksa V., Palczewski K., Hofmann K. P., Ernst O. P. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci USA 2003; 100(5)2290–2295
  • Zhou W., Flanagan C., Ballesteros J. A., Konvicka K., Davidson J. S., Weinstein H., Millar R. P., Sealfon S. C. A reciprocal mutation supports helix 2 and 7 proximity in the gonatropin‐releasing hormone receptor. Mol Pharmacol 1994; 45(2)165–170
  • Sealfon S. C., Chi L., Ebersole B. J., Rodic V., Zhang D., Ballesteros J. A., Weinstein H. Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5‐HT2A receptor. J Biol Chem 1995; 270(28)16683–16688
  • Perlman J. H., Colson A. O., Wang W., Bence K., Osman R., Gershengorn M. C. Interactions between conserved residues in transmembrane helices 1, 2 and 7 of the thyrotropin‐releasing hormone receptor. J Biol Chem 1997; 272(18)11937–11942
  • Donnelly D., Maudsley S., Gent J. P., Moser R. N., Hurrell C. R., Findlay J. B.C. Conserved polar residues in the transmembrane domain of the human tachykinin NK2 receptor: functional roles and structural implications. Biochem J 1999; 339(PT1)55–61
  • Munshi U. M., Pogozheva I. D., Menon K. M.J. Highly conserved serine in the third transmembrane helix of the luteinizing hormone/human chorionic gonadotropin receptor regulates receptor activation. Biochemistry 2003; 42(13)3708–3715
  • Shi L., Liapakis G., Xu R., Guarnieri F., Ballesteros J. A., Javitch J. A. β2‐adrenergic receptor activation. J Biol Chem 2002; 277(43)40989–40996
  • Ebersole B. J., Visiers I., Weinstein H., Sealfon S. C. Molecular basis of partial agonism: orientation of indoleamine ligands in the binding pocket of the human serotonin 5‐HT2A receptor determines relative efficacy. Mol Pharmacol 2003; 63(1)36–43
  • Farahbakhsh Z. T., Hideg K., Hubbell W. L. Photoactivated conformational changes in rhodopsin: a time‐resolved spin label study. Science 1993; 262(5138)1416–1419
  • Heck M., Schädel S. A., Maretzki D., Bartl F. J., Ritter E., Palczewski K., Hofmann K. P. Signaling states of rhodopsin. J Biol Chem 2003; 278(5)3162–3169
  • Gether U., Kobilka B. K. G protein‐coupled receptors II. Mechanism of agonist activation. J Biol Chem 1998; 273(29)17979–17982
  • Peleg G., Ghanouni P., Kobilka B. K., Zare R. N. Single‐molecule spectroscopy of the β2 adrenergic receptor: observation of conformational substates in a membrane protein. Proc Natl Acad Sci USA 2001; 98(15)8469–8474
  • Ghanouni P., Gryczynski Z., Steenhuis J. J., Lee T. W., Farrens D. L., Lakowicz J. R., Kobilka B. K. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. J Biol Chem 2001; 276(27)24433–24436
  • Rios C. D., Jordan B. A., Gomes I., Devi L. A. G‐protein‐coupled receptor dimerization: modulation of receptor function. Pharmacol Therapeut 2001; 92(2–3)71–87
  • Angers S., Salahpour A., Bouvier M. Dimerization: an emerging concept for G protein‐coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002; 42: 409–435
  • Ng G. Y., O'Dowd B. F., Lee S. P., Chung H. T., Brann M. R., Seeman P., George S. R. Dopamine D2 receptor dimers and receptor‐blocking peptides. Biochem Biophys Res Commun 1996; 227: 200–204
  • Romano S., Yang W. L., O'Malley K. L. Metobotropic glutamate receptor 5 is a disulfide‐linker dimer. J Biol Chem 1996; 271(45)28612–28616
  • Cvejic S., Devi L. A. Dimerization of the δ opioid receptor: implication for a role in receptor internalization. J Biol Chem 1997; 272(43)26959–26964
  • McVey M., Kellet E., Rees S., Wilson S., Pope A. J., Milligan G. Monitoring receptor oligomerization using time‐resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer: the human δ‐opioid receptor displays constitutive oligomerization at the cell surface which is not regulated by receptor occupancy. J Biol Chem 2001; 276(17)14092–14099
  • Bai M., Trivedi S., Brown E. M. Dimerization of the extracellular calcium‐sensing receptor (CaR) on the cell surface of caR‐transfected HEK293 cells. J Biol Chem 1998; 273(36)23605–23610
  • Zeng F. Y., Wess J. Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 1999; 274(27)19487–19497
  • Angers S., Salahpour A., Joly E., Hilairet S., Chelsky D., Dennis M., Bouvier M. Detection of β2‐adrenergic receptor dimerization in living cells using bio‐ luminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 2000; 97(7)3684–3689
  • Hebert T. E., Moffett S., Morello J. P., Loisel T. P., Bichet D. G., Barret C., Bouvier M. A peptide derived from a β2‐adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996; 271(27)16384–16392
  • Kroeger K. M., Hanyaloglu A. C., Seeber R. M., Miles L., Eidne K. A. Constitutive and agonist‐dependent homooligomerization of the thyrotropin‐releasing hormone receptor; detection in living cells using bioluminescence resonance energy transfer. J Biol Chem 2001; 276(16)12736–12743
  • Cornea A., Janovick J. A., Maya‐Nunez G., Conn P. M. Gonadotropin releasing hormone microaggregation: rate monitored by fluorescence resonance energy transfer. J Biol Chem 2001; 276(3)2153–2158
  • Horvat R. D., Roess D. A., Nelson S. E., Barisas B. G., Clay C. M. Binding of agonist but not antagonist leads to fluorescence resonance energy transfer between intrinsically fluorescent gonadotropin releasing hormone receptors. Mol Endocrinol 2001; 15(5)695–703
  • White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., Barnes A. A., Emson P., Foord S. M., Marshall F. H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998; 396(6712)679–682
  • Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., Yao W. J., Johnson M., Gunwaldsen C., Huang L. Y., Tang C., Shen Q., Salon J. A., Morse K., Laz T., Smith K. E., Nagarathnam D., Noble S. A., Branchek T. A., Gerald C. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998; 396(6712)674–679
  • Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., Mosbacher J., Bischoff S., Kulik A., Shigemoto R., Karschin A., Bettler B. GABA(B) receptor subtypes assemble into functional heteromeric complexes. Nature 1998; 396(6712)683–687
  • Kuner R., Kohr G., Grunewald S., Eisenhardt G., Bach A., Kornau H. C. Role of heteromer formation in GABAB receptor function. Science 1999; 283(5398)74–77
  • Jordan B. A., Devi L. A. G‐protein‐coupled receptor heterodimerization modulates receptor function. Nature 1999; 399(6737)697–700
  • Gomes I., Jordan B. A., Gupta A., Trapaidze N., Nagy V., Devi L. A. Heterodimerization of μ and δ opioid receptors: a role in opiate synergy. J Neurosci 2000; 20(22)RC110
  • Pfeiffer M., Koch T., Schroder H., Klutzny M., Kirscht S., Kreienkamp H. J., Höllt V., Schulz S. Homo‐ and heterodimerization of somatostatin receptor subtypes. Inactivation of sst3 receptor function by heterodimerization with sst2A. J Biol Chem 2001; 276(17)14027–14036
  • Gines S., Hillion J., Torvinen M., Le Crom S., Casado V., Canela E. I., Rondin S., Lew J. Y., Watson S., Zoli M., Agnati L. F., Vernierá P., Luis C., Ferré S., Fuxe K., Franco R. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 2000; 97(15)8606–8611
  • Abdalla S., Lother H., Quitterer U. AT1‐receptor heterodimers show enhanced G‐protein activation and altered receptor sequestration. Nature 2000; 407(6800)94–98
  • Jordan B. A., Trapaidze N., Gomes I., Nivarthi R., Devi L. A. Oligomerization of opioid receptors with beta 2‐adrenergic receptors: a role in trafficking and mitogen‐activated protein kinase activation. Proc Natl Acad Sci USA 2001; 98(1)343–348
  • Rocheville M., Lange D. C., Kumar U., Patel S. C., Patel R. C., Patel Y. C. Receptors for dopamine and somatostatin: formation of hetero‐oligomers with enhanced functional activity. Science 2000; 288(5463)154–157
  • Kunishima N., Shimada Y., Tsuji Y., Sato T., Yamamoto M., Kumasaka T., Nakanishi S., Jingami H., Morokawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000; 407(6807)971–977
  • Sullivan R., Chateauneuf A., Coulombe N., Kolakowski L. F., Johnson M., Hebert T. E., Ethier N., Belle M., Metters K., Abramovitz G. P., O'Neill G. P., Ng G. Y. Co‐expression of full length γ‐aminobutyric acid B (GABAB) receptors with truncated receptors and metabotropic glutamate receptor 4 supports the GABAB heterodimer as the functional receptor. J Pharmacol Exp Ther 2000; 293(2)460–467
  • Klabunde T., Hessler G. Drug design strategies for targeting G‐protein‐coupled receptors. Chem Bio Chem 2002; 3(10)928–944
  • Visiers I., Ballesteros J. A., Weinstein H. Three‐dimensional representations of G protein‐coupled receptor structures and mechanisms. Methods Enzymol 2002; 343: 329–371
  • Shacham S., Topf M., Avisar N., Glaser F., Marantz Y., Bar‐Haim S., Noiman S., Naor Z., Becker O. M. Modeling the 3D structure of GPCRs from sequence. Med Res Rev 2001; 21(5)472–483
  • Vaidehi N., Floriano W. B., Trabanino R., Hall S. E., Freddolino P., Choi E. J., Zamanakos G., Goddard W. A., III. Prediction of structure and function of G protein‐coupled receptors. Proc Natl Acad Sci USA 2002; 99(20)12622–12627
  • Hibert M. F., Trumpp‐Kallmeyer S., Bruinvels A., Hoflack J. Three‐dimensional models of neurotransmitter G‐binding protein‐coupled receptors. Mol Pharmacol 1991; 40(1)8–15
  • Trumpp‐Kallmeyer S., Hoflack J., Bruinvels A., Hibert M. Modeling of G‐protein‐coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem 1992; 35(19)3448–3462
  • Cho W., Taylor L. P., Mansour A., Akil H. Hydrophobic residues of the D2 dopamine receptor are important for binding and signal transduction. J Neurochem 1995; 65(5)2105–2115
  • Matsui H., Lazerno S., Birdsall N. J.M. Probing the location of the allosteric site on m1 muscarinic receptors by site‐directed mutagenesis. Mol Pharmacol 1995; 47(1)88–98
  • Bourdon H., Trumpp‐Kallmeyer S., Schreuder H., Hoflack J., Hibert M., Wermuth C. G. Modelling of the binding site of the human m1 muscarinic receptor: experimental validation and refinement. J Comp‐Aided Mol Des 1997; 11(14)317–332
  • Choudary M. S., Sachs N., Uluer R. A., Glennon R. B., Westkaemper R. B., Roth B. L. Different ergoline and ergopeptine binding to 5‐HT2a receptors: ergolines require an aromatic residue at position 340 for high affinity binding. Mol Pharmacol 1995; 47(3)450–457
  • Roth B. L., Shoham M., Choudary M. S., Khan N. Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5‐hydroxytryptamine 2a receptors. Mol Pharmacol 1997; 52(2)259–266
  • Ballesteros J. A., Shi L., Javitch J. A. Structural mimicry in G protein‐coupled receptors: implications of the high‐resolution structure of rhodopsin for structure‐function analysis of rhodopsin‐like receptors. Mol Pharmacol 2001; 60(1)1–19
  • Mouillac B., Chini B., Balestre M. N., Elands J., Trumpp‐Kallmeyer S., Hoflack J., Hibert M., Jard S., Barberis C. The binding site of neuropeptide vasopressin V1a receptor. J Biol Chem 1995; 270(43)25771–25777
  • Chini B., Mouillac B., Ala Y., Balestre M. N., Trumpp‐Kallmeyer S., Hoflack J., Elands J., Hibert M., Manning M., Jard S., Barberis C. EMBO J 1995; 14(10)2176–2182
  • Cotte N., Balestre M. N., Aumelas A., Mahé E., Phalipou S., Morin D., Hibert M., Manning M., Durroux T., Barberis C., Mouillac B. Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding. Eur J Biochem 2000; 267(13)4253–4263
  • Stenkamp R. E., Filipek S., Driessen C. A.G.G., Teller D. C., Palczewski K. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein‐coupled receptors. Biochim Biophys Acta 2002; 1565(2)168–182
  • Bissantz C., Bernard P., Hibert M., Rognan D. Protein‐based virtual screening of chemical databases. 2. Are homology models of G‐protein coupled receptors suitable targets?. Proteins 2003; 50(1)5–25
  • Bissantz C., Folkers G., Rognan D. Protein‐based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 2000; 43(25)4759–4767
  • Forbes I. T., Dabbs S., Duckworth D. M., Ham P., Jones G. E., King F. D., Saunders D. V., Blaney F. E., Naylor C. B., Baxter G. S., Blackburn T. P., Kennett G. A., Wood M. D. Synthesis, biological activity, and molecular modeling studies of selective 5‐HT2C/2B receptor antagonists. J Med Chem 1996; 39(25)4966–4977
  • Bromidge S. M., Dabbs S., Davies D. T., Duckworth D. M., Forbes I. T., Ham P., Jones G. E., King F. D., Saunders D. V., Starr S., Thewlis K. M., Wyman P. A., Blaney F. E., Naylor C. B., Bailey F., Blackburn T. P., Holland V., Kennett G. A., Riley G. J., Wood M. D. Novel and selective 5‐HT2C/2B receptor antagonists as potential anxiolytic agents: synthesis, quantitative structure‐activity relationships, and molecular modeling of substituted 1‐(3‐pyridylcarbamoyl)indolines. J Med Chem 1998; 41(10)1598–1612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.