44
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Renal Abnormalities in Mice Caused by Insufficiency of p38α

, , &
Pages 173-183 | Published online: 10 Jul 2003

References

  • Minden A., Lin A., McMahon M., Lange‐Carter C., Dijard B., Davis R. J., Johnson G. L., Karin M. Differential activation of ERK and JNK mitogen‐activated protein kinases by Raf‐1 and MEKK. Science 1994; 266: 1719–1723
  • Cano E., Mahadevan L. C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 1995; 20: 117–122
  • Han J., Jiang Y., Li Z., Kravchenko V. V., Ulevitch R. J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997; 386: 296–299
  • Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Heys J. R., Landvatter S. W., Strickler J. E., McLaughlin M. M., Siemens I. R., Fisher S. M., Livi G. P., White J. R., Adams J. L., Young P. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–746
  • Han J., Lee J. D., Bibbs L., Ulevitch R. J. A map kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–811
  • Rouse J., Cohen P., Trigon S., Morange M., Llamazares M. M., Zamanillo D., Hunt T., Nebreda A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase‐2 and phosphorylation of small heat shock proteins. Cell 1994; 78: 1027–1037
  • Jiang Y., Chen C., Li Z., Guo W., Gegner J. A., Lin S., Han J. Characterization of the structure and function of a new mitogen‐central activated protein kinase. J Biol Chem 1996; 271: 17920–17926
  • Li Z., Yong J., Ulevitch R. J., Han J. The primary structure of p38γ: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 1996; 228: 334–340
  • Jiang Y., Gram H., Zhao M., New L., Gu J., Feng L., Padova D., Ulevitch R. J., Han J. Characterization of the structure and function of the fourth member of p38 group of mitogen activated protein kinases, p38δ. J Biol Chem 1997; 272: 30122–30128
  • Tamura K., Sudo T., Senftleben U., Dadak A. M., Johnson R., Karin M. Requirement for p38 in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 2000; 102: 221–231
  • Adams R. H., Porras A., Alonso G., Jones M., Vintersten K., Panelli S., Valladares A., Perez L., Klein R., Nebreda A. R. Essential role of p38 MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000; 6: 109–116
  • Mudgett J. S., Ding J., Guh‐Siesel L., Chartrain N. A., Yang L., Gopal S., Shen M. M. Essential role for p38 mitogen‐activated protein kinase in placental angiogenesis. Proc Natl Acad Sci USA 2000; 97: 10454–10459
  • Allen M., Svensson L., Roach M., Hambor J., McNeish J., Gabel C. A. Deficiency of the stress kinase p38 results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme‐deficient embryonic stem cells. J Exp Med 2000; 191: 859–869
  • Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Proinflammatory cytokines and environmental stress cause p38 mitogen activated kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270: 7420–7426
  • Bulavin D. V., Higashimoto Y., Popoff I. J., Gaarde W. A., Bastur V., Potapova O., Appella E., Fornace A. J., Jr. Nature 2001; 411: 102–107
  • Dmitrieva N. I., Bulavin D. V., Fornace A. J., Jr., Burg M. B. Rapid activation of G2/M checkpoint after hypertonic stress in renal inner medullary epithelial (IME) cells is protective and requires p38 kinase. Proc Natl Acad Sci USA 2002; 99(1)184–189
  • Conrad P. W., Rust R. T., Han J. H., Millhorn D. E., Beitner‐meostasis J. D. Selective activation of p38α and p38γ by hypoxia. J Biol Chem 1994; 274: 23570–23576
  • Herlaar E., Brown Z. p38 MAPK signaling cascades in inflammatory disease. Mol Med Today 1999; 5: 439–447
  • Cuenda A., Cohen P. Stress‐activated protein kinase‐2/p38 and a Rapamycin sensitive pathway are required for C2C12 myogenesis. J Biol Chem 1999; 274: 4341–4346
  • Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK‐p38 MAP kinase on apoptosis. Science 1995; 270: 1326–1331
  • Brewster J. L., Dwyer V. N.D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science 1993; 259: 1760–1763
  • Berl T., Siriwardana G., Ao L., Butterfield L. M., Heasley L. E. Multiple mitogen‐activated protein kinases are regulated by hyperosmolality in mouse IMCD cells. Am J Physiol Renal 1997; 272: F305–F311
  • Wojtasazek P. A., Heasley L. E., Berl T. In vivo regulation of MAP kinase in Ratus norvegicus renal papilla by water loading and restriction. J Clin Invest 1998; 102(10)1874–1881
  • Sheikh‐Hamad D., Mari J. D., Suki W. N., Safirstein R., Watt B. A., Rouse D. p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin‐Darby canine kidney cells. J Biol Chem 1998; 273(3)1832–1837
  • Nadkarini V., Gabbay K. H., Bohren K. M., Sheikh‐Hamad D. Osmotic response element enhancer activity. J Biol Chem 1999; 274(29)20185–20190
  • Yang T., Park J. M., Arend L., Huang Y., Topaloglu R., Pasumarthy A., Praetorius H., Springer K., Briggs J. P., Schnermann J. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase‐2 expression in a mouse macula densa cell line. J Biol Chem 2000; 275(48)37922–37929
  • Cheng H., Wang J., Zhang M., McKanna J. A., Harris R. C. Role of p38 in the regulation of renal cortical cyclooxygenase‐2 expression by extracellular chloride. J Clin Invest 2000; 106(5)681–688
  • Yin T., Sandhu G., Wolfgang G. D., Burrier A., Webb R. L., Ringel D. F., Hai T., Whelan J. Tissue‐specific pattern of stress kinase activation in ischemia/reperfused heart and kidney. J Biol Chem 1997; 272(32)19943–19950
  • Kang S., Adler S. G., LaPage J., Natarajan R. p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int. 2001; 60: 543–552
  • Bokemeyer D., Ostendorf T., Kunter U., Lindemann M., Kramer H. J., Floege J. Differential activation of mitogen‐activated protein kinases in experimental mesangio‐proliferative glomerulonephritis. J Am Soc Nephrol 2000; 11: 232–240
  • Arnould T., Sellin L., Benzing T., Tsiokas L., Cohen H. T., Kim E., Walz G. Cellular activation triggered by the autosomal dominant polycystic kidney disease gene product PKD2. Mol Cell Biol 1999; 19(5)3423–3434
  • Morham S. G., Langenbach R., Loftin C. D., Tiano H. F., Vouloumanos N. J., Jennette C., Mahler J. F., Kluckman K. D., Ledford A., Lee C. A., Smithies O. Prostaglandin synthase 2 gene disruption causes severe pathology in the mouse. Cell 1995; 83(3)473–482
  • Cheng H., Wang J., Zhang M., Miyazaki Y., Ichikawa I., McKanna J. A., Harris R. C. Angiotensin II attenuates renal cortical cyclooxygenase‐2 expression. J Clin Invest 1999; 103(7)953–961
  • Wolf K., Castrop H., Hartner A., Goppelt‐Strube M., Hilgers K. F., Kurtz A. Inhibition of the renin‐angiotensin system upregulates cyclooxygenase‐2 expression in the macula densa. Hypertension 1999; 34: 503–507
  • Zhang M., Harris R. C., McKanna J. A. Regulation of cyclooxygenase‐2 (COX‐2) in rat renal cortex by adrenal glucocorticoids mineralocorticoids. Proc Natl Acad Sci USA 1999; 96(26)15280–15285
  • The polycystic kidney disease 1 gene encodes a 14kb transcript and lies within a duplicated region on chromosome 16. Cell 1994; 77: 881–894, The European Polycystic Kidney Disease Consortium
  • Watnick T., He N., Wang K., Liang Y., Parfrey P., Hefferton D., George‐Hyslop P. A., Germino G., Pei Y. Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans‐heterozygous mutations. Nat Genet 2000; 25: 143–144
  • Mochizuki T., Wu G., Hayashi T., Xenophontos S. C., Veldhuisen B., Saris J. J., Reynolds D. M., Cai Y., Gabow P. A., Pierides A., Kimberling W. J., Breuning M. H., Deltas C. C., Peters D. J.M., Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996; 272: 1339–1342
  • Daoust M., Reynold D., Bichet D. G., Somolo S. Evidence for a third genomic locus for autosomal dominant polycystic kidney disease. Genomics 1995; 25: 733–736
  • Choi J. P., Muallem D., Kiselyov K., Lee M. G., Thomas P. J., Muallem S. Aberrant CFTR‐dependent HCO3 transport in mutations associated with cystic fibrosis. Nature 2001; 410: 94–97
  • Gonzalez‐Perrett S., Kim K., Ibarra C., Damiano A. E., Zotta E., Batelli M., Harris P. C., Reisin I. L., Arnaout M. A., Cantiello H. C. Polycystin‐2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca‐permeable nonselective cation channel. Proc Natl Acad Sci USA 2001; 98: 1182–1187
  • Wu G., Markowitz G. S., Li L., Agati V. D.D., Factor S. M., Geng L., Tibara S., Tuchman J., Cai Y., Park J. H., Adelsberg J., Hou H., Kucherlapati R., Edelmann W., Somlo S. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 2000; 24: 75–78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.