99
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Glucose Uptake in Enterocytes: A Test for Molecular Targets of Okadaic Acid

, , &
Pages 211-224 | Published online: 10 Jul 2003

References

  • Vieytes M. R., Louzao M. C., Alfonso A., Cabado A. G., Botana L. M. Enteric toxic episodes. Mechanism of action and toxicology. Seafood and Freshwater Toxins: Pharmacology, Physiology and Detection, L. M. Botana. Marcel Dekker, New York 2000; 239–256
  • Matias W. G., Traore A., Creppy E. E. Variations in the distribution of okadaic acid in organs and biological fluids of mice related to diarrhoeic syndrome. Hum Exp Toxicol 1999; 18: 345–350
  • Dawson J. F., Holmes F. B. Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins. Front Biosci 1999; 4: d646–d658
  • Louzao M. C., Vieytes M. R., Botana L. M. Sodium‐glucose cotransport in animal cells. Trends Comparative Biochem Physiol 1998; 5: 275–282
  • Yoshioka K., Saito M., Nemoto Y., Matsuoka H. Evaluation of 2‐[N‐7‐(nitrobenz‐2‐oxa‐1, 3‐diazol‐4‐yl)amino]‐2‐deoxy‐D‐glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans. Appl Microbiol Biotechnol 1996a; 46: 400–404
  • Yoshioka K., Takahashi H., Homma T., Saito M., Nemoto Y., Matsuoka H. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta 1996b; 1289: 5–6
  • Yamada K., Nakata M., Horimoto N., Saito M., Matsuoka H., Inagaki N. Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic b‐cells. J Biol Chem 2000; 275: 22278–22283
  • Brown P., Sepulveda F. A rabbit jejunal isolated enterocyte preparation suitable for transport studies. J Physiol 1985; 363: 257–270
  • Roman Y., Alfonso A., Louzao M. C., Vieytes M. R., Botana L. M. Confocal microscopy study of the different patterns of 2‐NBDG uptake in rabbit enterocytes in the apical and basal zone. Pflugers Arch 2001; 443: 234–239
  • Natarajan A., Srienc F. Dynamics of glucose uptake by single Escherichia coli cells. Metab Eng 1999; 1: 320–333
  • Ball S. W., Bailey J. R., Stewart J. M., Vogels C. M., Westcott S. A. A fluorescent compound for glucose uptake measurements in isolated rat cardiomyocytes. Can J Physiol Pharmacol 2002; 80: 205–209
  • Vayro S., Silverman M. PKC regulates turnover rate of rabbit intestinal Na+‐glucose transporter expressed in COS‐7 cells. Am J Physiol 1999; 276: C1053–C1060
  • Wright E., Hirsch J., Loo D., Zampighi G. Regulation of Na+/glucose cotransporters. J Exp Biol 1997; 200: 287–293
  • Chung B. M., Wong J. K., Hardin J. A., Gall D. G. Role of actin in EGF‐induced alterations in enterocyte SGLT1 expression. Am J Physiol 1999; 276: G463–G469
  • Louzao M. C., Vieytes M. R., Botana L. M. D‐glucose transporter on mussel mantle cell membranes: effect of sodium and phlorizin. J Exp Zool 1993; 267: 572–577
  • Shinoda S. Protein toxins produced by pathogenic vibrios. J Nat Toxins 1999; 8: 259–269
  • Lencer W. I. Microbes and microbial toxins: paradigms for microbial‐mucosal interactions. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am J Physiol Gastrointest Liver Physiol 2001; 280: G781–G786
  • Pothoulakis C., Castagliuolo I., LaMont J. T. Nerves and intestinal mast cell modulate responses to enterotoxins. News Physiol Sci 1998; 13: 58–63
  • Hirsch J. R., Loo D. D.F., Wright E. M. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J Biol Chem 1996; 271: 14740–147406
  • Sharp P., Debnam E. The role of cyclic AMP in the control of sugar transport across the brush‐border and basolateral membranes of rat jejunal enterocytes. Exp Physiol 1994; 79: 203–214
  • Leira F., Louzao M. C., Vieites J. M., Botana L. M., Vieytes M. R. Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts cells. Toxicol In Vitro 2002; 16: 267–273
  • Wright E., Loo D., Panayotova‐Heiermann M., Hirayama B., Turk E., Eskandari S., Lam J. Structure and function of the Na+/glucose cotransporter. Acta Physiol Scand Suppl 1998; 643: 257–264
  • Delazay O., Baghdiguian S., Fantini J. The development of Na(+)‐dependent glucose transport during differentiation of an intestinal epithelial cell clone is regulated by protein kinase C. J Biol Chem 1995; 270: 12536–12541
  • Shioda T., Ohta T., Isselbacher K., Rhoads D. Differentiation‐dependent expression of the Na+/glucose cotransporter (SGLT1) in LLC‐PK1 cells: role of protein kinase C activation and ongoing transcription. Proc Natl Acad Sci USA 1994; 91: 11919–11923
  • Ishikawa Y., Eguchi T., Ishida H. Mechanism of beta‐adrenergic agonist‐induced transmural transport of glucose in rat small intestine. Regulation of phosphorylation of SGLT1 controls the function. Biochim Biophys Acta 1997; 1357: 306–318
  • Dounay A. B., Forsyth C. J. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor. Curr Med Chem 2002; 9: 1939–1980
  • Michell B. J., Chen Zp., Tiganis T., Stapleton D., Katsis F., Power D. A., Sim A. T., Kemp B. E. Coordinated control of endothelial nitric‐oxide synthase phosphorylation by protein kinase C and the cAMP‐dependent protein kinase. J Biol Chem 2001; 276: 17625–17628

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.