457
Views
25
CrossRef citations to date
0
Altmetric
Research Article

STRUCTURE AND FUNCTION OF DIPHTHERIA TOXIN: FROM PATHOLOGY TO ENGINEERING

, &
Pages 321-359 | Published online: 28 Oct 2002

REFERENCES

  • Gill D. M., Uchida T., Singer R. A. Expression of diphtheria toxin genes carried by integrated and nonintegrated phage beta. Virology 1972; 50: 664
  • Holmes R. K. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J. Infect. Dis. 2000; 181(Suppl. 1)S156
  • Murphy J. R., Michel J. L., Teng M. Evidence that the regulation of diphtheria toxin production is directed at the level of transcription. J. Bacteriol. 1978; 135: 511
  • Collier R. J. Understanding the mode of action of diphtheria toxin: A perspective on progress during the 20th century. Toxicon 2001; 39: 1793
  • Loeffler F. Untersuchungen Uber De Bedeutung Der Mikroorganismen Fur Die Entstehung Der Diphtherie Beim Menschen, Bei Der Taube Und Beim Kalbe. Mitt. Klin. Gesundheitsamte, Berlin 1884; 2: 421
  • Roux E., Jr., Yersin A. Contribution a l'Etude de la Diphterie. Ann. Inst. Pasteur 1888; 2: 620
  • Behring E. Untersuchungen Uber Das Zustandekommen Der Diphtherie-Immunitat Bei Theiren. Dtsch. Med. Wochenschr. 1890; 16: 1145
  • Grundbacher F. J. Behring's discovery of diphtheria and tetanus antitoxins. Immunol. Today 1992; 13: 188
  • Ramon G., Jr. Sur Le Pouvoir Floculant et sur les Proprietes Immunisantes d'une Toxine Diphterique Rendue Anatoxique (Anatoxine). C. R. Acad. Sci. 1923; 177: 1330
  • Eaton M. D. The purification and concentration of diphtheria toxin. J. Bacteriol. 1936; 31: 347
  • Pappenheimer A. M., Jr. Diphtheria toxin—I: Isolation and characterization of a toxic protein from C. diphtheriae filtrates. J. Biol. Chem. 1937; 125: 543
  • Kaczorek M., Delpeyroux F., Chenciner N., Streeck R. E., Murphy J. R., Boquet P., Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science 1983; 221: 855
  • Greenfield L., Bjorn M. J., Horn G., Fong D., Buck G. A., Collier R. J., Kaplan D. A. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc. Natl. Acad. Sci. U. S. A. 1983; 80: 6853
  • Choe S., Bennett M. J., Fujii G., Curmi P. M., Kantardjieff K. A., Collier R. J., Eisenberg D. The crystal structure of diphtheria toxin. Nature 1992; 357: 216
  • Murphy J. R., Bishai W., Borowski M., Miyanohara A., Boyd J., Nagle S. Genetic construction, expression, and melanoma-selective cytotoxicity of a diphtheria toxin-related alpha-melanocyte-stimulating hormone fusion protein. Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 8258
  • Bennett M. J., Eisenberg D. Refined structure of monomeric diphtheria toxin at 2.3 Å resolution. Protein Sci. 1994; 3: 1464
  • Bennett M. J., Choe S., Eisenberg D. Refined structure of dimeric diphtheria toxin at 2.0 Å resolution. Protein Sci. 1994; 3: 1444
  • Bell C. E., Eisenberg D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 1996; 35: 1137
  • Louie G. V., Yang W., Bowman M. E., Choe S. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol. Cell 1997; 1: 67
  • Menestrina G., Schiavo G., Montecucco C. Molecular mechanisms of action of bacterial protein toxins. Mol. Aspects Med. 1994; 15: 79
  • Holm L., Sander C. Globin fold in a bacterial toxin. Nature 1993; 361: 309
  • Reed J. C. Double identity for proteins of the Bcl-2 family. Nature 1997; 387: 773
  • Naglich J. G., Metherall J. E., Russell D. W., Eidels L. Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell 1992; 69: 1051
  • Tsuneoka M., Nakayama K., Hatsuzawa K., Komada M., Kitamura N., Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J. Biol. Chem. 1993; 268: 26461
  • Keen J. H., Maxfield F. R., Hardegree M. C., Habig W. H. Receptor-mediated endocytosis of diphtheria toxin by cells in culture. Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 2912
  • Moya M., Dautry-Varsat A., Goud B., Louvard D., Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J. Cell Biol. 1985; 101: 548
  • Morris R. E., Gerstein A. S., Bonventre P. F., Saelinger C. B. Receptor-mediated entry of diphtheria toxin into monkey kidney (vero) cells: Electron microscopic evaluation. Infect. Immun. 1985; 50: 721
  • London E. Diphtheria toxin: Membrane interaction and membrane translocation. Biochim. Biophys. Acta 1992; 1113: 25
  • London E. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation. Mol. Microbiol. 1992; 6: 3277
  • Draper R. K., Simon M. I. The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement. J. Cell Biol. 1980; 87: 849
  • Sandvig K., Olsnes S. Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem. 1981; 256: 9068
  • Sandvig K., Olsnes S. Diphtheria toxin entry into cells is facilitated by low pH. J. Cell Biol. 1980; 87: 828
  • Lemichez E., Bomsel M., Devilliers G., vanderSpek J., Murphy J. R., Lukianov E. V., Olsnes S., Boquet P. Membrane translocation of diphtheria toxin fragment a exploits early to late endosome trafficking machinery. Mol. Microbiol. 1997; 23: 445
  • Falnes P. O., Olsnes S. Cell-mediated reduction and incomplete membrane translocation of diphtheria toxin mutants with internal disulfides in the A fragment. J. Biol. Chem. 1995; 270: 20787
  • Honjo T., Nishizuka Y., Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 1968; 243: 3553
  • Collier R. J. Effect of diphtheria toxin on protein synthesis: Inactivation of one of the transfer factors. J. Mol. Biol. 1967; 25: 83
  • Collier R. J., Cole H. A. Diphtheria toxin subunit active in vitro. Science 1969; 164: 1179
  • Van Ness B. G., Howard J. B., Bodley J. W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J. Biol. Chem. 1980; 255: 10710
  • Van Ness B. G., Howard J. B., Bodley J. W. ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J. Biol. Chem. 1980; 255: 10717
  • Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 1991; 251: 936
  • Higashiyama S., Lau K., Besner G. E., Abraham J. A., Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J. Biol. Chem. 1992; 267: 6205
  • Mitamura T., Higashiyama S., Taniguchi N., Klagsbrun M., Mekada E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem. 1995; 270: 1015
  • Mitamura T., Umata T., Nakano F., Shishido Y., Toyoda T., Itai A., Kimura H., Mekada E. Structure–function analysis of the diphtheria toxin receptor toxin binding site by site-directed mutagenesis. J. Biol. Chem. 1997; 272: 27084
  • Hooper K. P., Eidels L. Glutamic acid 141 of the diphtheria toxin receptor (HB-EGF precursor) is critical for toxin binding and toxin sensitivity. Biochem. Biophys. Res. Commun. 1996; 220: 675
  • Cha J. H., Brooke J. S., Eidels L. Toxin binding site of the diphtheria toxin receptor: Loss and gain of diphtheria toxin binding of monkey and mouse heparin-binding, epidermal growth factor-like growth factor precursors by reciprocal site-directed mutagenesis. Mol. Microbiol. 1998; 29: 1275
  • Middlebrook J. L., Dorland R. B. Response of cultured mammalian cells to the exotoxins of Pseudomonas aeruginosa and Corynebacterium diphtheriae: Differential cytotoxicity. Can. J. Microbiol. 1977; 23: 183
  • Brown J. G., Almond B. D., Naglich J. G., Eidels L. Hypersensitivity to diphtheria toxin by mouse cells expressing both diphtheria toxin receptor and CD9 antigen. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 8184
  • Iwamoto R., Higashiyama S., Mitamura T., Taniguchi N., Klagsbrun M., Mekada E. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein Drap27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J. 1994; 13: 2322
  • Cha J. H., Brooke J. S., Ivey K. N., Eidels L. Cell surface monkey CD9 antigen is a coreceptor that increases diphtheria toxin sensitivity and diphtheria toxin receptor affinity. J. Biol. Chem. 2000; 275: 6901
  • Nakamura K., Mitamura T., Takahashi T., Kobayashi T., Mekada E. Importance of the major extracellular domain of CD9 and the epidermal growth factor (EGF)-like domain of heparin-binding EGF-like growth factor for up-regulation of binding and activity. J. Biol. Chem. 2000; 275: 18284
  • Hasuwa H., Shishido Y., Yamazaki A., Kobayashi T., Yu X., Mekada E. CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem. Biophys. Res. Commun. 2001; 289: 782
  • Middlebrook J. L., Dorland R. B., Leppla S. H. Association of diphtheria toxin with vero cells. Demonstration of a receptor. J. Biol. Chem. 1978; 253: 7325
  • Brooke J. S., Cha J. H., Eidels L. Diphtheria toxin: Receptor interaction: Association, dissociation, and effect of pH. Biochem. Biophys. Res. Commun. 1998; 248: 297
  • Shen W. H., Choe S., Eisenberg D., Collier R. J. Participation of lysine 516 and phenylalanine 530 of diphtheria toxin in receptor recognition. J. Biol. Chem. 1994; 269: 29077
  • Greenfield L., Johnson V. G., Youle R. J. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 1987; 238: 536
  • Carroll S. F., Barbieri J. T., Collier R. J. Dimeric form of diphtheria toxin: Purification and characterization. Biochemistry 1986; 25: 2425
  • Collier R. J., Kandel J. Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J. Biol. Chem. 1971; 246: 1496
  • Drazin R., Kandel J., Collier R. J. Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J. Biol. Chem. 1971; 246: 1504
  • Gill D. M., Dinius L. L. Observations on the structure of diphtheria toxin. J. Biol. Chem. 1971; 246: 1485
  • Gill D. M., Pappenheimer A. M., Jr. Structure–activity relationships in diphtheria toxin. J. Biol. Chem. 1971; 246: 1492
  • Chiron M. F., Fryling C. M., FitzGerald D. J. Cleavage of pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J. Biol. Chem. 1994; 269: 18167
  • Gordon V. M., Klimpel K. R., Arora N., Henderson M. A., Leppla S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect. Immun. 1995; 63: 82
  • Sucic J. F., Moehring J. M., Inocencio N. M., Luchini J. W., Moehring T. J. Endoprotease PACE4 is Ca2+-dependent and temperature-sensitive and can partly rescue the phenotype of a furin-deficient cell strain. Biochem. J. 1999; 339: 639
  • Williams D. P., Wen Z., Watson R. S., Boyd J., Strom T. B., Murphy J. R. Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J. Biol. Chem. 1990; 265: 20673
  • Carroll S. F., Barbieri J. T., Collier R. J. Diphtheria toxin: Purification and properties. Methods Enzymol. 1988; 165: 68
  • Papini E., Rappuoli R., Murgia M., Montecucco C. Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J. Biol. Chem. 1993; 268: 1567
  • Ronnberg B. J., Middlebrook J. L. Cellular regulation of diphtheria toxin cell surface receptors. Toxicon 1989; 27: 1377
  • Quertenmont P., Wolff C., Wattiez R., Vander Borght P., Falmagne P., Ruysschaert J. M., Cabiaux V. Structure and topology of diphtheria toxin R domain in lipid membranes. Biochemistry 1999; 38: 660
  • Tortorella D., Sesardic D., Dawes C. S., London E. Immunochemical analysis shows all three domains of diphtheria toxin penetrate across model membranes. J. Biol. Chem. 1995; 270: 27446
  • Aniento F., Gu F., Parton R. G., Gruenberg J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J. Cell Biol. 1996; 133: 29
  • Yamaizumi M., Mekada E., Uchida T., Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978; 15: 245
  • Falnes P. O., Ariansen S., Sandvig K., Olsnes S. Requirement for prolonged action in the cytosol for optimal protein synthesis inhibition by diphtheria toxin. J. Biol. Chem. 2000; 275: 4363
  • Blewitt M. G., Chao J. M., McKeever B., Sarma R., London E. Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: Effect of salt. Biochem. Biophys. Res. Commun. 1984; 120: 286
  • Blewitt M. G., Chung L. A., London E. Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration. Biochemistry 1985; 24: 5458
  • Zhao J. M., London E. Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state. Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 2002
  • Tortorella D., Sesardic D., Dawes C. S., London E. Immunochemical analysis of the structure of diphtheria toxin shows all three domains undergo structural changes at low pH. J. Biol. Chem. 1995; 270: 27439
  • D'Silva P. R., Lala A. K. Unfolding of diphtheria toxin. Identification of hydrophobic sites exposed on lowering of pH by photolabeling. J. Biol. Chem. 1998; 273: 16216
  • Weiss M. S., Blanke S. R., Collier R. J., Eisenberg D. Structure of the isolated catalytic domain of diphtheria toxin. Biochemistry 1995; 34: 773
  • Zhao J. M., London E. Conformation and model membrane interactions of diphtheria toxin fragment A. J. Biol. Chem. 1988; 263: 15369
  • Murphy J. R., vanderSpek J. C. Targeting diphtheria toxin to growth factor receptors. Semin. Cancer Biol. 1995; 6: 259
  • Parker M. W., Pattus F. Rendering a membrane protein soluble in water: A common packing motif in bacterial protein toxins. Trends Biochem. Sci. 1993; 18: 391
  • Zhan H., Choe S., Huynh P. D., Finkelstein A., Eisenberg D., Collier R. J. Dynamic transitions of the transmembrane domain of diphtheria toxin: Disulfide trapping and fluorescence proximity studies. Biochemistry 1994; 33: 11254
  • Malenbaum S. E., Collier R. J., London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry 1998; 37: 17915
  • Wang Y., Malenbaum S. E., Kachel K., Zhan H., Collier R. J., London E. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. J. Biol. Chem. 1997; 272: 25091
  • Chenal A., Nizard P., Forge V., Pugnière M., Roy M.-O., Mani J.-C., Guillain F., Gillet D. Does fusion of domains from unrelated proteins affect their folding pathways and the structure changes involved in their function? A case study with the diphtheria toxin T domain. Protein Eng., in press
  • Kuwajima K. The molten globule state of alpha-lactalbumin. FASEB J. 1996; 10: 102
  • Ptitsyn O. B. The Molten Globule State, T. E. Creighton. Freeman, New York 1992; 243
  • Falnes P. O., Madshus I. H., Sandvig K., Olsnes S. Replacement of negative by positive charges in the presumed membrane-inserted part of diphtheria toxin B fragment. Effect on membrane translocation and on formation of cation channels. J. Biol. Chem. 1992; 267: 12284
  • Silverman J. A., Mindell J. A., Finkelstein A., Shen W. H., Collier R. J. Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain. J. Biol. Chem. 1994; 269: 22524
  • Umata T., Mekada E. Diphtheria toxin translocation across endosome membranes. A novel cell permeabilization assay reveals new diphtheria toxin fragments in endocytic vesicles. J. Biol. Chem. 1998; 273: 8351
  • Kaul P., Silverman J., Shen W. H., Blanke S. R., Huynh P. D., Finkelstein A., Collier R. J. Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci. 1996; 5: 687
  • O'Keefe D. O., Cabiaux V., Choe S., Eisenberg D., Collier R. J. pH-Dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349-Lys. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 6202
  • Ren J., Sharpe J. C., Collier R. J., London E. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Biochemistry 1999; 38: 976
  • Donovan J. J., Simon M. I., Draper R. K., Montal M. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. U. S. A. 1981; 78: 172
  • Kagan B. L., Finkelstein A., Colombini M. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc. Natl. Acad. Sci. U. S. A. 1981; 78: 4950
  • Papini E., Sandona D., Rappuoli R., Montecucco C. On the membrane translocation of diphtheria toxin: At low pH the toxin induces ion channels on cells. EMBO J. 1988; 7: 3353
  • Sandvig K., Olsnes S. Diphtheria toxin-induced channels in vero cells selective for monovalent cations. J. Biol. Chem. 1988; 263: 12352
  • Eriksen S., Olsnes S., Sandvig K., Sand O. Diphtheria toxin at low pH depolarizes the membrane, increases the membrane conductance and induces a new type of ion channel in vero cells. EMBO J. 1994; 13: 4433
  • Olsnes S., Moskaug J. O., Stenmark H., Sandvig K. Translocation of diphtheria toxin to the cytosol and formation of cation selective channels. J. Physiol. 1990; 84: 191
  • Montecucco C., Papini E., Schiavo G., Padovan E., Rossetto O. Ion channel and membrane translocation of diphtheria toxin. FEMS Microbiol. Immunol. 1992; 5: 101
  • Zhan H., Oh K. J., Shin Y. K., Hubbell W. L., Collier R. J. Interaction of the isolated transmembrane domain of diphtheria toxin with membranes. Biochemistry 1995; 34: 4856
  • Oh K. J., Zhan H., Cui C., Hideg K., Collier R. J., Hubbell W. L. Organization of diphtheria toxin T domain in bilayers: A site-directed spin labeling study. Science 1996; 273: 810
  • Oh K. J., Zhan H., Cui C., Altenbach C., Hubbell W. L., Collier R. J. Conformation of the diphtheria toxin T domain in membranes: A site-directed spin-labeling study of the TH8 helix and TL5 loop. Biochemistry 1999; 38: 10336
  • D'Silva P. R., Lala A. K. Organization of diphtheria toxin in membranes. A hydrophobic photolabeling study. J. Biol. Chem. 2000; 275: 11771
  • Hu H. Y., Huynh P. D., Murphy J. R., vanderSpek J. C. The effects of helix breaking mutations in the diphtheria toxin transmembrane domain helix layers of the fusion toxin DAB389-IL-2. Protein Eng. 1998; 11: 811
  • Silverman J. A., Mindell J. A., Zhan H., Finkelstein A., Collier R. J. Structure–function relationships in diphtheria toxin channels: I. Determining a minimal channel-forming domain. J. Membr. Biol. 1994; 137: 17
  • Cabiaux V., Quertenmont P., Conrath K., Brasseur R., Capiau C., Ruysschaert J. M. Topology of diphtheria toxin B fragment inserted in lipid vesicles. Mol. Microbiol. 1994; 11: 43
  • Quertenmont P., Wattiez R., Falmagne P., Ruysschaert J. M., Cabiaux V. Topology of diphtheria toxin in lipid vesicle membranes: A proteolysis study. Mol. Microbiol. 1996; 21: 1283
  • Kachel K., Ren J., Collier R. J., London E. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. J. Biol. Chem. 1998; 273: 22950
  • Senzel L., Gordon M., Blaustein R. O., Oh K. J., Collier R. J., Finkelstein A. Topography of diphtheria toxin's T domain in the open channel state. J. Gen. Physiol. 2000; 115: 421
  • Mindell J. A., Silverman J. A., Collier R. J., Finkelstein A. Locating a residue in the diphtheria toxin channel. Biophys. J. 1992; 62: 41
  • Mindell J. A., Silverman J. A., Collier R. J., Finkelstein A. Structure–function relationships in diphtheria toxin channels: III. Residues which affect the cis pH dependence of channel conductance. J. Membr. Biol. 1994; 137: 45
  • Mindell J. A., Silverman J. A., Collier R. J., Finkelstein A. Structure function relationships in diphtheria toxin channels: II. A residue responsible for the channel's dependence on trans pH. J. Membr. Biol. 1994; 137: 29
  • Madshus I. H. The N-terminal alpha-helix of fragment B of diphtheria toxin promotes translocation of fragment A into the cytoplasm of eukaryotic cells. J. Biol. Chem. 1994; 269: 17723
  • Madshus I. H., Wiedlocha A., Sandvig K. Intermediates in translocation of diphtheria toxin across the plasma membrane. J. Biol. Chem. 1994; 269: 4648
  • Senzel L., Huynh P. D., Jakes K. S., Collier R. J., Finkelstein A. The diphtheria toxin channel-forming T domain translocates its own NH2-terminal region across planar bilayers. J. Gen. Physiol. 1998; 112: 317
  • Nizard P., Chenal A., Beaumelle B., Fourcade A., Gillet D. Prolonged display or rapid internalization of the IgG-binding protein ZZ anchored to the surface of cells using the diphtheria toxin T domain. Protein Eng. 2001; 14: 439
  • Bell C. E., Poon P. H., Schumaker V. N., Eisenberg D. Oligomerization of a 45 kilodalton fragment of diphtheria toxin at pH 5.0 to a molecule of 20–24 subunits. Biochemistry 1997; 36: 15201
  • Steere B., Eisenberg D. Characterization of high-order diphtheria toxin oligomers. Biochemistry 2000; 39: 15901
  • Sharpe J. C., London E. Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: Probable relationship to oligomerization. J. Membr. Biol. 1999; 171: 209
  • Gordon M., Finkelstein A. The number of subunits comprising the channel formed by the T domain of diphtheria toxin. J. Gen. Physiol. 2001; 118: 471
  • Huynh P. D., Cui C., Zhan H., Oh K. J., Collier R. J., Finkelstein A. Probing the structure of the diphtheria toxin channel. Reactivity in planar lipid bilayer membranes of cysteine-substituted mutant channels with methanethiosulfonate derivatives. J. Gen. Physiol. 1997; 110: 229
  • Olsnes S., Falnes P. O. Probing pores with peptide plugs. Topology of membrane-inserted diphtheria toxin. J. Gen. Physiol. 2000; 115: 417
  • Korchev Y. E., Bashford C. L., Pederzolli C., Pasternak C. A., Morgan P. J., Andrew P. W., Mitchell T. J. A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. Biochem. J. 1998; 329: 571
  • Menzl K., Maier E., Chakraborty T., Benz R. HlyA hemolysin of Vibrio cholerae O1 biotype E1 tor. Identification of the hemolytic complex and evidence for the formation of anion-selective ion-permeable channels. Eur. J. Biochem. 1996; 240: 646
  • Maier E., Reinhard N., Benz R., Frey J. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect. Immun. 1996; 64: 4415
  • Slatin S. L., Abrams C. K., English L. Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem. Biophys. Res. Commun. 1990; 169: 765
  • vanderSpek J. C., Mindell J. A., Finkelstein A., Murphy J. R. Structure/function analysis of the transmembrane domain of DAB389-interleukin-2, an interleukin-2 receptor-targeted fusion toxin. The amphipathic helical region of the transmembrane domain is essential for the efficient delivery of the catalytic domain to the cytosol of target cells. J. Biol. Chem. 1993; 268: 12077
  • vanderSpek J. C., Howland K., Friedman T., Murphy J. R. Maintenance of the hydrophobic face of the diphtheria toxin amphipathic transmembrane helix 1 is essential for the efficient delivery of the catalytic domain to the cytosol of target cells. Protein Eng. 1994; 7: 985
  • vanderSpek J., Cassidy D., Genbauffe F., Huynh P. D., Murphy J. R. An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells. J. Biol. Chem. 1994; 269: 21455
  • Oh K. J., Senzel L., Collier R. J., Finkelstein A. Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 8467
  • Falnes P. O., Choe S., Madshus I. H., Wilson B. A., Olsnes S. Inhibition of membrane translocation of diphtheria toxin A—Fragment by internal disulfide bridges. J. Biol. Chem. 1994; 269: 8402
  • Falnes P. O., Sandvig K. Penetration of protein toxins into cells. Curr. Opin. Cell Biol. 2000; 12: 407
  • Ren J., Kachel K., Kim H., Malenbaum S. E., Collier R. J., London E. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science 1999; 284: 955
  • Klingenberg O., Olsnes S. Ability of methotrexate to inhibit translocation to the cytosol of dihydrofolate reductase fused to diphtheria toxin. Biochem. J. 1996; 313: 647
  • Wiedlocha A., Madshus I. H., Mach H., Middaugh C. R., Olsnes S. Tight folding of acidic fibroblast growth factor prevents its translocation to the cytosol with diphtheria toxin as vector. EMBO J. 1992; 11: 4835
  • Kandel J., Collier R. J., Chung D. W. Interaction of fragment A from diphtheria toxin with nicotinamide adenine dinucleotides. J. Biol. Chem. 1974; 249: 2088
  • Gehrmann R., Henschen A., Klink F. Primary structure of elongation factor 2 around the site of ADP-ribosylation is highly conserved from archaebacteria to eukaryotes. FEBS Lett. 1985; 185: 37
  • Phan L. D., Perentesis J. P., Bodley J. W. Saccharomyces cerevisiae elongation factor 2. Mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J. Biol. Chem. 1993; 268: 8665
  • Iglewski W. J. Cellular ADP-ribosylation of elongation factor 2. Mol. Cell Biochem. 1994; 138: 131
  • Fendrick J. L., Iglewski W. J. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 554
  • Kimata Y., Kohno K. Elongation factor 2 mutants deficient in diphthamide formation show temperature-sensitive cell growth. J. Biol. Chem. 1994; 269: 13497
  • Papini E., Schiavo G., Sandona D., Rappuoli R., Montecucco C. Histidine 21 is at the NAD+ binding site of diphtheria toxin. J. Biol. Chem. 1989; 264: 12385
  • Blanke S. R., Huang K., Wilson B. A., Papini E., Covacci A., Collier R. J. Active-site mutations of the diphtheria toxin catalytic domain: Role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2. Biochemistry 1994; 33: 5155
  • Johnson V. G., Nicholls P. J. Histidine 21 does not play a major role in diphtheria toxin catalysis. J. Biol. Chem. 1994; 269: 4349
  • Papini E., Santucci A., Schiavo G., Domenighini M., Neri P., Rappuoli R., Montecucco C. Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin. J. Biol. Chem. 1991; 266: 2494
  • Blanke S. R., Huang K., Collier R. J. Active-site mutations of diphtheria toxin: Role of tyrosine-65 in NAD binding and ADP-ribosylation. Biochemistry 1994; 33: 15494
  • Carroll S. F., McCloskey J. A., Crain P. F., Oppenheimer N. J., Marschner T. M., Collier R. J. Photoaffinity labeling of diphtheria toxin fragment A with NAD: Structure of the photoproduct at position 148. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 7237
  • Carroll S. F., Collier R. J. NAD binding site of diphtheria toxin: Identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 3307
  • Chung D. W., Collier R. J. The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim. Biophys. Acta 1977; 483: 248
  • Wilson B. A., Reich K. A., Weinstein B. R., Collier R. J. Active-site mutations of diphtheria toxin: Effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine. Biochemistry 1990; 29: 8643
  • Wilson B. A., Collier R. J. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: Active-site structure and enzymic mechanism. Curr. Top. Microbiol. Immunol. 1992; 175: 27
  • Paliwal R., London E. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (Diphtheria toxoid): Formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion. Biochemistry 1996; 35: 2374
  • Foss F. M. DAB[389]IL-2 (ONTAK): A novel fusion toxin therapy for lymphoma. Clin. Lymphoma 2000; 1: 110
  • Hall P. D., Virella G., Willoughby T., Atchley D. H., Kreitman R. J., Frankel A. E. Antibody response to DT-GM, a novel fusion toxin consisting of a truncated diphtheria toxin (DT) linked to human granulocyte-macrophage colony stimulating factor (GM), during a phase I trial of patients with relapsed or refractory acute myeloid leukemia. Clin. Immunol. 2001; 100: 191
  • Stenmark H., Moskaug J. O., Madshus I. H., Sandvig K., Olsnes S. Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol. J. Cell Biol. 1991; 113: 1025
  • Madshus I. H., Olsnes S., Stenmark H. Membrane translocation of diphtheria toxin carrying passenger protein domains. Infect. Immun. 1992; 60: 3296
  • Sundan A., Olsnes S., Sandvig K., Pihl A. Preparation and properties of chimeric toxins prepared from the constituent polypeptides of diphtheria toxin and ricin. Evidence for entry of ricin A-chain via the diphtheria toxin pathway. J. Biol. Chem. 1982; 257: 9733
  • Aullo P., Giry M., Olsnes S., Popoff M. R., Kocks C., Boquet P. A chimeric toxin to study the role of the 21 kDa GTP binding protein rho in the control of actin microfilament assembly. EMBO J. 1993; 12: 921
  • Liger D., Nizard P., Gaillard C., vanderSpek J. C., Murphy J. R., Pitard B., Gillet D. The diphtheria toxin transmembrane domain as a pH sensitive membrane anchor for human interleukin-2 and murine interleukin-3. Protein Eng. 1998; 11: 1111
  • Nizard P., Liger D., Gaillard C., Gillet D. Anchoring antibodies to membranes using a diphtheria toxin T domain-ZZ fusion protein as a pH sensitive membrane anchor. FEBS Lett. 1998; 433: 83
  • Nizard P., Gross D. A., Chenal A., Beaumelle B., Kosmatopoulos K., Gillet D. Ancrer des Cytokines aux Cellules Cancereuses a l'Aide de la Toxine Diphterique: Mieux Que l'Immunotherapie par Transfert de Gene?. J. Soc. Biol. 2001; 195: 229
  • Nizard P., Gross D. A., Chenal A., Beaumelle B., Kosmatopoulos K., Gillet D. Anchoring cytokines to cancer cells using a protein membrane anchor: An alternative to gene transfer for vaccine preparation. Cancer Gene Ther. 2000; 7: 1203
  • Dinges M. M., Cook D. R., King J., Curiel T. J., Zhang X. Q., Harrison G. S. HIV-regulated diphtheria toxin A chain gene confers long-term protection against HIV type 1 infection in the human promonocytic cell line U937. Hum. Gene Ther. 1995; 6: 1437
  • Saito M., Iwawaki T., Taya C., Yonekawa H., Noda M., Inui Y., Mekada E., Kimata Y., Tsuru A., Kohno K. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 2001; 19: 746
  • Audibert F., Jolivet M., Chedid L., Alouf J. E., Boquet P., Rivaille P., Siffert O. Active antitoxic immunization by a diphtheria toxin synthetic oligopeptide. Nature 1981; 289: 593
  • Boquet P., Alouf J. E., Duflot E., Siffert O., Rivaille P. Characteristics of guinea-pig immune sera elicited by a synthetic diphtheria toxin oligopeptide. Mol. Immunol. 1982; 19: 1541
  • Lobeck K., Drevet P., Leonetti M., Fromen-Romano C., Ducancel F., Lajeunesse E., Lemaire C., Menez A. Towards a recombinant vaccine against diphtheria toxin. Infect. Immun. 1998; 66: 418
  • Fisher K. J., Wilson J. M. The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer. Biochem. J. 1997; 321: 49
  • Uherek C., Fominaya J., Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. J. Biol. Chem. 1998; 273: 8835
  • Williams D. P., Parker K., Bacha P., Bishai W., Borowski M., Genbauffe F., Strom T. B., Murphy J. R. Diphtheria toxin receptor binding domain substitution with interleukin-2: Genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng. 1987; 1: 493
  • Hesketh P., Caguioa P., Koh H., Dewey H., Facada A., McCaffrey R., Parker K., Nylen P., Woodworth T. Clinical activity of a cytotoxic fusion protein in the treatment of cutaneous T-cell lymphoma. J. Clin. Oncol. 1993; 11: 1682
  • LeMaistre C. F., Saleh M. N., Kuzel T. M., Foss F., Platanias L. C., Schwartz G., Ratain M., Rook A., Freytes C. O., Craig F., et al. Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin-2. Blood 1998; 91: 399
  • Moreland L. W., Sewell K. L., Trentham D. E., Bucy R. P., Sullivan W. F., Schrohenloher R. E., Shmerling R. H., Parker K. C., Swartz W. G., Woodworth T. G., et al. Interleukin-2 diphtheria fusion protein (DAB486IL-2) in refractory rheumatoid arthritis. A double-blind, placebo-controlled trial with open-label extension. Arthritis Rheum. 1995; 38: 1177
  • Bousvaros A., Stevens A. C., Strom T. B., Murphy J., Lamont J. T. Interleukin-2 fusion protein (DAB389IL-2) selectively targets activated human peripheral blood and lamina propria lymphocytes. Dig. Dis. Sci. 1997; 42: 1542
  • Bagel J., Garland W. T., Breneman D., Holick M., Littlejohn T. W., Crosby D., Faust H., Fivenson D., Nichols J. Administration of DAB389IL-2 to patients with recalcitrant psoriasis: A double-blind, phase II multicenter trial. J. Am. Acad. Dermatol. 1998; 38: 938
  • Gottlieb S. L., Gilleaudeau P., Johnson R., Estes L., Woodworth T. G., Gottlieb A. B., Krueger J. G. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1995; 1: 442
  • Woodworth T. G., Nichols J. C. Recombinant fusion toxins—A new class of targeted biologic therapeutics. Cancer Treat. Res. 1993; 68: 145
  • Frankel A. E., McCubrey J. A., Miller M. S., Delatte S., Ramage J., Kiser M., Kucera G. L., Alexander R. L., Beran M., Tagge E. P., et al. Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 2000; 14: 576
  • Chan C. H., Blazar B. R., Greenfield L., Kreitman R. J., Vallera D. A. Reactivity of murine cytokine fusion toxin, diphtheria toxin390-murine interleukin-3 (DT390-mIL-3), with bone marrow progenitor cells. Blood 1996; 88: 1445
  • Vallera D. A., Seo S. Y., Panoskaltsis-Mortari A., Griffin J. D., Blazar B. R. Targeting myeloid leukemia with a DT[390]-mIL-3 fusion immunotoxin: Ex vivo and in vivo studies in mice. Protein Eng. 1999; 12: 779
  • Liger D., vanderSpek J. C., Gaillard C., Cansier C., Murphy J. R., Leboulch P., Gillet D. Characterization and receptor specific toxicity of two diphtheria toxin-related interleukin-3 fusion proteins DAB389-mIL-3 and DAB389-(Gly4ser)2-mIL-3. FEBS Lett. 1997; 406: 157
  • Cai J., Zheng T., Murphy J., Waters C. A., Lin G. Y., Gill P. S. IL-4R expression in Aids-Ks Cells and response to rhIL-4 and IL-4 toxin (DAB389-IL-4). Invest. New Drugs 1997; 15: 279
  • Chadwick D. E., Jean L. F., Jamal N., Messner H. A., Murphy J. R., Minden M. D. Differential sensitivity of human myeloma cell lines and normal bone marrow colony forming cells to a recombinant diphtheria toxin-interleukin 6 fusion protein. Br. J. Haematol. 1993; 85: 25
  • Masood R., Lunardi-Iskandar Y., Jean L. F., Murphy J. R., Waters C., Gallo R. C., Gill P. Inhibition of AIDS-associated kaposi's sarcoma cell growth by DAB389-interleukin 6. AIDS Res. Hum. Retrovir. 1994; 10: 969
  • Sweeney E. B., Foss F. M., Murphy J. R., vanderSpek J. C. Interleukin 7 (IL-7) receptor-specific cell killing by DAB389 IL-7: A novel agent for the elimination of IL-7 receptor positive cells. Bioconjug. Chem. 1998; 9: 201
  • vanderSpek J. C., Sutherland J., Sampson E., Murphy J. R. Genetic construction and characterization of the diphtheria toxin-related interleukin 15 fusion protein DAB389 sIL-15. Protein Eng. 1995; 8: 1317
  • Vallera D. A., Panoskaltsis-Mortari A., Blazar B. R. Renal dysfunction accounts for the dose limiting toxicity of DT390anti-CD3scFv, a potential new recombinant anti-GVHD immunotoxin. Protein Eng. 1997; 10: 1071
  • Ma S., Hu H., Thompson J., Stavrou S., Scharff J., Neville D. M., Jr. Genetic construction and characterization of an anti-monkey CD3 single-chain immunotoxin with a truncated diphtheria toxin. Bioconjug. Chem. 1997; 8: 695
  • Aullo P., Alcami J., Popoff M. R., Klatzmann D. R., Murphy J. R., Boquet P. A recombinant diphtheria toxin related human CD4 fusion protein specifically kills HIV infected cells which express gp120 but selects fusion toxin resistant cells which carry HIV. EMBO J. 1992; 11: 575
  • LeMaistre C. F., Meneghetti C., Howes L., Osborne C. K. Targeting the EGF receptor in breast cancer treatment. Breast Cancer Res. Treat. 1994; 32: 97
  • Landgraf R., Pegram M., Slamon D. J., Eisenberg D. Cytotoxicity and specificity of directed toxins composed of diphtheria toxin and the EGF-like domain of heregulin beta1. Biochemistry 1998; 37: 3220
  • Batoz M., Coll Fresno P. M., Pizette S., Raffioni S., Birnbaum D., Coulier F. A diphtheria toxin/fibroblast growth factor 6 mitotoxin selectivity kills fibroblast growth factor receptor-expressing cell lines. Cell Growth Differ. 1995; 6: 1143
  • Chadwick D. E., Williams D. P., Niho Y., Murphy J. R., Minden M. D. Cytotoxicity of a recombinant diphtheria toxin-granulocyte colony-stimulating factor fusion protein on human leukemic blast cells. Leuk. Lymphoma 1993; 11: 249
  • Hotchkiss C. E., Hall P. D., Cline J. M., Willingham M. C., Kreitman R. J., Gardin J., Latimer A., Ramage J., Feely T., DeLatte S., et al. Toxicology and pharmacokinetics of DTGM, a fusion toxin consisting of a truncated diphtheria toxin (DT388) linked to human granulocyte-macrophage colony-stimulating factor, in cynomolgus monkeys. Toxicol. Appl. Pharmacol. 1999; 158: 152
  • vanderSpek J. C., Sutherland J. A., Zeng H., Battey J. F., Jensen R. T., Murphy J. R. Inhibition of protein synthesis in small cell lung cancer cells induced by the diphtheria toxin-related fusion protein DAB389 GRP. Cancer Res. 1997; 57: 290
  • Tatro J. B., Wen Z., Entwistle M. L., Atkins M. B., Smith T. J., Reichlin S., Murphy J. R. Interaction of an alpha-melanocyte-stimulating hormone-diphtheria toxin fusion protein with melanotropin receptors in human melanoma metastases. Cancer Res. 1992; 52: 2545
  • Benoliel R., Eliav E., Mannes A. J., Caudle R. M., Leeman S., Iadarola M. J. Actions of intrathecal diphtheria toxin-substance P fusion protein on models of persistent pain. Pain 1999; 79: 243
  • Fisher C. E., Sutherland J. A., Krause J. E., Murphy J. R., Leeman S. E., vanderSpek J. C. Genetic construction and properties of a diphtheria toxin-related substance P fusion protein: In vitro destruction of cells bearing substance P receptors. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 7341
  • Francis J. W., Brown R. H., Jr., Figueiredo D., Remington M. P., Castillo O., Schwarzschild M. A., Fishman P. S., Murphy J. R., vanderSpek J. C. Enhancement of diphtheria toxin potency by replacement of the receptor binding domain with tetanus toxin C-fragment: A potential vector for delivering heterologous proteins to neurons. J. Neurochem. 2000; 74: 2528
  • Arora N., Masood R., Zheng T., Cai J., Smith D. L., Gill P. S. Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res. 1999; 59: 183

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.