88
Views
6
CrossRef citations to date
0
Altmetric
Research Article

THE STRUCTURE AND FUNCTION OF PARDAXIN

Pages 391-421 | Published online: 28 Oct 2002

REFERENCES

  • Kelly R. B. Storage and release of neurotransmitters. Cell 1993; 72: 43
  • Trimble W. S., Linial M., Scheller R. H. Cellular and molecular biology of the presynaptic nerve terminal. Annu. Rev. Neurosci. 1991; 14: 93
  • Linial M. SNARE proteins—why so many? Why so few?. J. Neurochem. 1997; 69: 1781
  • Dolly J. O. Neurotoxins in Neurochemistry. Ellis Horwood, Chichester, England 1988
  • Garcia A. G., Albillos A., Gandia L., Lopez M. G., Michelena P., Montiel C. W-toxins, Calcium Channels and Neurosecretion. Toxins and Signal Transduction, Y. Gutman, P. Lazarovici. Harwood Academic Publishers, Amsterdam, The Netherlands 1997; 155
  • Schiavo G., Benfenati F., Poulain B., Rossetto O., Polversino d.L. P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359: 832
  • Montecucco C., Pellizzari R., Rossetto O., Schiavo G., Tonello F., Washbourne F. Clostridial Neurotoxins as Enzymes: Structure and Function. Secretory Systems and Toxins, M. Linial, A. Grasso, P. Lazarovici. Harwood Academic Publishers, Amsterdam, The Netherlands 1998; 315
  • Grasso A. α-Latrotoxin as a Tool for Studying Ionic Channels and Transmitter Release Process. Neurotoxins in Neurochemistry, O. J. Dolly. J. Wiley and Sons, Chichester, England 1988; 67
  • Surkova I. Can exocytosis induced by α-latrotoxin be explained solely by its channel-forming activity?. Ann. N. Y. Acad. Sci. 1994; 710: 48
  • Bloch-Shilderman E., Abu-Raya S., Lazarovici P. Ionophore Polypeptide Toxins and Signal Transduction. Toxins and Signal Transduction, Y. Gutman, P. Lazarovici. Harwood Academic Publishers, Amsterdam, The Netherlands 1997; 211
  • Harvey A. L. Cytolytic Toxins. Handbook of Toxinology, W. T. Shier, D. Mebs. Marcel Dekker, Inc., New York 1990; 1
  • Andersen D. S. Gramicidin channels. Ann. Rev. Physiol. 1984; 46: 531
  • Hall J. E., Vodyanoy I., Balasubramanian J. M., Marshall G. R. Alamethicin. A rich model for channel behaviour. Biophys. J. 1981; 45: 233
  • Lazarovici P., Primor N., Loew L. M. Purification and pore forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J. Biol. Chem. 1986; 261: 16704
  • Shai Y., Fox J., Caratsch C., Shih Y., Edwards C., Lazarovici P. Sequencing and synthesis of pardaxin, a polypeptide from the Red Sea Moses sole with ionophore activity. FEBS Lett. 1988; 242: 161
  • Adermann K., Manfred R., Paul E., Lazarovici P., Hochman J., Wellhoner H. Isolation, characterization and synthesis of a novel pardaxin isoform. FEBS Lett. 1998; 435: 173
  • Tachibana K., Sakaitanai M., Nakanishi K. Pavonins: Shark-repelling ichthyotoxins from the defense secretion of the Pacific sole. Science 1986; 226: 703
  • Thompson S. A., Tachibana K., Nakanishi K., Kubota I. Mellitin-like peptide from the shark-repelling defense secretion of the sole Pardachirus pavoninus. Science 1986; 233: 341
  • Lazarovici P., Primor N., Gennaro J., Fox J., Shai Y., Lelkes P. I., Caratsch C. G., Raghunathan G., Guy H. R., Shih Y. L., Edwards C. Origin, Chemistry and Mechanisms of Action of a Repellent, Presynaptic Excitatory, Ionophore Polypeptide. Marine Toxins: Origin, Structure and Molecular Pharmacology, S. Hall, G. Strichartz. ACS Symposium Series, American Chemical Society, Washington, DC 1990; 347
  • Lazarovici P., Primor N., Caratsch C. G., Munz K., Lelkes P., Loew L. M., Shai Y., McPhie P., Louini A., Contreras M. L., Fox J., Shih Y. L., Edwards C. Action on Artificial and Neuronal Membranes of Pardaxin, A New Presynaptic Excitatory Polypeptide Neurotoxin with Ionophore Activity. Neurotoxins in Neurochemistry, O. J. Dolly. Ellis Horwood, Chichester 1988; 219
  • Eisenberg D. Three-dimensional structure of membrane and surface proteins. Ann. Rev. Biochem. 1984; 53: 595
  • Lazarovici P., Edwards C., Raghunathan G., Guy H. R. Secondary structure, permeability and molecular modeling of pardaxin pores. J. Nat. Toxins 1992; 1: 1
  • Moran A., Korchak Z., Moran N., Primor N. Surfactant and Channel-forming Activities of the Moses Sole Toxin. Toxins, Drugs and Pollutants in Marine Animals, L. Bolis, J. Zadunaisky, R. Gilles. Springer Verlag, Berlin 1984; 13
  • Shi J. L., Edwards C., Lazarovici P. Ion selectivity of the channels formed by pardaxin, an ionophore, in bilayer membranes. Nat. Toxins 1995; 3: 151
  • Guy H. R., Raghunathan G. Structural Models of Membrane Insertion and Channel Formation by Antiparallel-helical Membrane Peptides. Transport Through Membranes: Carriers, Channels and Pumps, E. Pullman. Magnes Found, Jerusalem 1989; 369
  • Raghunathan G., Seetharamulu P., Brooks B., Guy H. R. Models of delta-hemolysin membrane channels and crystal structures. Proteins 1990; 8: 213
  • Guy H. R., Conti F. Pursuing the structure and function of voltage-gated channels. TINS 1990; 13: 201
  • Barrow C. J., Nakanishi K., Tachibana K. Structure and activity studies on pardaxin and analogues using model membranes of phosphatidylcholine. Biochem. Biophys. Acta 1992; 1112: 235
  • Shai Y., Nach D., Yanovsky A. Channel formation properties of synthetic pardaxin and analogues. J. Biol. Chem. 1990; 265: 20202
  • Zagorski M. G., Norma D. G., Barrow C. J., Iwashita T., Tachibana K., Patel D. J. Solution structure of pardaxin P-2. Biochemistry 1991; 30: 8009
  • Shai Y., Hadari Y. R., Finkels A. pH-Dependent pore formation properties of pardaxin analogues. J. Biol. Chem. 1991; 266: 22346
  • Shai Y. Pardaxin: Channel formation by shark repellant peptide from fish. Toxicology 1994; 87: 109
  • Rapaport D., Shai Y. Aggregation and organization of pardaxin in phospholipid membranes. J. Biol. Chem. 1992; 267: 6502
  • Loew L. M., Benson L., Lazarovici P., Rosenberg I. Fluorimetric analysis of transferable membrane pores. Biochemistry 1985; 24: 2101
  • Renner P., Caratsch C. E., Waser P. G., Lazarovici P., Primor N. Presynaptic effects of the pardaxins, polypeptides isolated from the gland secretion of the flatfish Pardachirus marmoratus. Neuroscience 1987; 23: 319
  • Arribas M., Blasi J., Lazarovici P., Marsal J. Calcium-dependent and independent acetylcholine release from electric organ synaptosomes by pardaxin: Evidence of a biphasic action of an excitatory neurotoxin. J. Neurochem. 1993; 60: 552
  • Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U. S. A. 1976; 73: 2424
  • Burgoyne R. D. Control of exocytosis in adrenal chromaffin cells. Biochem. Biophys. Acta 1991; 1071: 174
  • Ahnert-Hilger G., Bhakdi S., Gratzl M. Minimal requirements for exocytosis: A study using PC12 cells permeabilized with Staphylococcal-toxin. J. Biol. Chem. 1985; 260: 12730
  • Lazarovici P. Challenging catecholamine exocytosis with pardaxin, an excitatory ionophore fish toxin. J. Toxicol., Toxin Rev. 1994; 13: 45
  • Lazarovici P., Lelkes P. I. Pardaxin induces exocytosis in bovine adrenal medullary chromaffin cells independent of calcium. J. Pharmacol. Exp. Ther. 1992; 263: 1317
  • Bloch-Shilderman E., Jiang H., Lazarovici P. Pardaxin, an ionophore neurotoxin, induces PC12 cell death: Activation of stress kinases and production of reactive oxygen species. J. Nat. Toxins 2002, (submitted for publication)
  • Abu-Raya S., Bloch-Shilderman E., Lelkes P. I., Trembovler V., Shohami E., Gutman Y., Lazarovici P. Characterization of pardaxin-induced dopamine release from PC12 cells: The role of calcium and eicosanoids. J. Pharmacol. Exp. Ther. 1999; 288: 399
  • Bloch-Shilderman E., Jiang H., Abu-Raya S., Linial M., Lazarovici P. Involvement of extracellular signal-regulated kinase (ERK) in pardaxin-induced dopamine release from PC12 cells. J. Pharmacol. Exp. Ther. 2001; 296: 704
  • Abu-Raya S., Bloch-Shilderman E., Shohami E., Trembovler V., Shai Y., Weidenfeld J., Yedgar S., Gutman Y., Lazarovici P. Pardaxin, a new pharmacological tool to stimulate the arachidonic acid cascade in PC12 cells. J. Pharmacol. Exp. Ther. 1998; 287: 889
  • Abu-Raya S., Bloch-Shilderman E., Jiang H., Adermann K., Schaefer E. M., Goldin E., Yavin E., Lazarovici P. Cellular Signaling in PC12 Cells Affected by Pardaxin. Natural and Selected Synthetic Toxins—Biological Implications, T. A. Tu, W. Gaffield. ACS Symposium Series, American Chemical Society, Washington, DC 2000; Vol. 745: 22
  • Blenis J. Signal transduction via the MAP kinases: Proceed at your own RSK. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 5889
  • Force T., Bonventre J. V. Growth factors and mitogen-activated protein kinases. Hypertension 1998; 31: 152
  • Gupta S., Barrett T., Whitmarsch A. J., Caranagh J., Sluss H. K., Derijard B., Daris R. J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996; 15: 2760
  • Molnar A., Theodoras A. M., Zon L. I., Kyriakis J. M. Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J. Biol. Chem. 1997; 272: 13229
  • Lin L. L., Wartman M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; 72: 269
  • Nikodijevic B., Nikodijevic D., Lazarovici P. Pardaxin-stimulated calcium uptake in PC12 cells is blocked by cadmium and is not mediated by L-type calcium channels. J. Basic Clin. Physiol. Pharmacol. 1992; 3: 359
  • Abu-Raya S., Trembovler V., Shohami E., Lazarovici P. Cytolysins increase intracellular calcium and induce eicosanoid release by pheochromocytoma PC12 cell cultures. Nat. Toxins 1993; 1: 263
  • Wang H. Y., Friedman E. Increased 5-hydroxytryptamine and norepinephrine release from rat brain slices by the Red Sea flatfish toxin pardaxin. J. Neurochem. 1986; 47: 56
  • Bloch-Shilderman E., Abu-Raya S., Rasouly D., Furman O., Trembovler V., Shavit D., Lelkes P. I., Shohami E., Gutman Y., Lazarovici P. The Role of Calcium, Protein Kinase C, Pertussis Toxin Substrates and Eicosanoids on Pardaxin-Induced Dopamine Release from PC12 Cells. Biochemical Aspects of Marine Pharmacology, P. Lazarovici, M. Spira, E. Zlotkin. Alaken, Inc., Ft. Collins, Colorado 1996; 158
  • De Souza L. R., Moore H., Raha S., Reed J. K. Purine and pyrimidine nucleotides activate distinct signalling pathways in PC12 cells. J. Neurosci. Res. 1995; 41: 753
  • Fink D., Contreras M. L., Lelkes P. I., Lazarovici P. Staphylococcus aureus α-toxin activates phospholipases and induces a Ca2+ influx in PC12 cells. Cell. Signal. 1989; 4: 387
  • Putney J. W., Jr., Takemura H., Hughes A. R., Horstman D. A., Thastrup O. How does inositol phosphate regulate calcium signaling?. FASEB 1989; 7: 1899
  • Orrenius S., McConkey D. J., Bellomo G., Nicotera P. Role of Ca2+ in toxic cell killing. Trends Pharmacol. Sci. 1989; 10: 281
  • Shier W. T. The final steps to toxic cell death. J. Toxicol., Toxin Rev. 1985; 4: 191
  • Shulman H. The multifunctional Ca2+/calmodulin-dependent protein kinases. Curr. Opin. Cell Biol. 1993; 5: 247
  • MacNicol M., Shulman H. Multiple Ca2+ signaling pathways converge on CaM kinase in PC12 cells. FEBS Lett. 1992; 304: 237
  • Kaplan D. R., Stephens R. M. Neurotrophin signal transduction by the trk receptor. J. Neurobiol. 1994; 25: 1404
  • Ely C. M., Oddie K. M., Litz J. S., Rossomando A. J., Kanner S. C., Sturgill T. W., Parsons S. J. A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits as associated MAP kinase activity and is highly related to a 42-kD mitogen-stimulated protein in fibroblasts. J. Cell Biol. 1990; 110: 731
  • Chao T. S., Byron K. L., Lee K. M., Villereal M., Rosner M. R. Activation of MAP kinases by calcium-dependent and calcium-independent pathways. Stimulation by thapsigargin and epidermal growth factor. J. Biol. Chem. 1992; 267: 19876
  • Rosen L. B., Ginty D. D., Weber M. J., Greenberg M. E. Membrane depolarization and calcium influx stimulates MEK and MAP kinases via activation of Ras. Neuron 1994; 12: 1207
  • Clapman D. E. Calcium signaling. Cell 1995; 80: 259
  • Hawes B. E., Biesen T. V., Koch W. J., Luttrell L. M., Lefkowitz R. J. Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. J. Biol. Chem. 1995; 270: 17148
  • Lopez-Ilasaca M. Signaling from G-protein-coupled receptors to mitogen-activated protein (MAP)-kinase cascades. Biochem. Pharmacol. 1998; 56: 269
  • Rusanescu G., Qi H., Thomas S. M., Brugge J. S., Halegoua S. Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 1995; 15: 1415
  • Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature (Lond.) 1995; 376: 737
  • Piomelli D. Arachidonic acid in cell signalling. Curr. Opin. Cell Biol. 1993; 5: 274
  • Bloch-Shilderman E., Abu-Raya S., Trembovler V., Boschwitz H., Gruzman A., Linial M., Lazarovici P. Calcium-dependent neurotransmitter release by pardaxin in PC12 cells: The involvement of calcium-independent phospholipase A2 (iPLA2). J. Pharmacol. Exp. Ther. 2002, in press
  • Lelkes P. I., Lazarovici P. Pardaxin induces aggregation, but not fusion of phosphatidylserine vesicles. FEBS Lett. 1988; 242: 161
  • Parker J., Daniel L. W., White M. Evidence of protein kinase C involvement in phorbol diester-stimulated arachidonic acid release and prostaglandin synthesis. J. Biol. Chem. 1987; 262: 385
  • Allen A. C., Gammon C. M., Ousley A. H., McCarthy K. D., Morell P. Bradykinin stimulates arachidonic acid release through the sequential actions of an Sn-1 diacylglycerol lipase and a monocyl glycerol lipase. J. Neurochem. 1992; 58: 1130
  • Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 1978; 120: 97
  • Kyte J., Doolittle R. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157: 105
  • Hopp T. P., Woods K. R. A computer progran for predicting protein antigenic determinants. Mol. Immunol. 1982; 20: 483

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.