49
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Structure‐Function Studies of the Plant Cyclotides: The Role of a Circular Protein Backbone

, , , &
Pages 555-576 | Published online: 12 Nov 2003

References

  • Barry D. G., Daly N. L., Clark R. J., Sando L., Craik D. J. Linearization of a naturally occuring circular protein maintains structure but eliminates hemolytic activity. Biochemistry 2003; 42(22)6688–6695
  • Bokesch H. R., Pannell L. K., Cochran P. K., Sowder R. C., 2nd, McKee T. C., Boyd M. R. A novel anti‐HIV macrocyclic peptide from Palicourea condensata. J. Nat. Prod. 2001; 64: 249–250
  • Camarero J. A., Cotton G. J., Adeva A., Muir T. W. Chemical ligation of unprotected peptides directly from a solid support. J. Pept. Res. 1998; 51: 303–316
  • Camarero J. A., Fushman D., Sato S., Giriat I., Cowburn D., Raleigh D. P., Muir T. W. Rescuing a destabilized protein fold through backbone cyclization. J. Mol. Biol. 2001; 308: 1045–1062
  • Claeson P., Göransson U., Johansson S., Luijendijk T., Bohlin L. Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 1998; 61: 77–81
  • Cobos E. S., Filimonov V. V., Galvez A., Maqueda M., Valdivia E., Martinez J. C., Mateo P. L. AS‐48: a circular protein with an extremely stable globular structure. FEBS Lett. 2001; 505: 379–382
  • Cobos E. S., Filimonov V. V., Galvez A., Valdivia E., Maqueda M., Martinez J. C., Mateo P. L. The denaturation of circular enterocin AS‐48 by urea and guanidinium hydrochloride. Biochim. Biophys. Acta 2002; 1598: 98–107
  • Cotton G. J., Muir T. W. Peptide ligation and its application to protein engineering. Chem. Biol. 1999; 6: R247–R256
  • Craik D. J. Plant cyclotides: circular, knotted peptide toxins. Toxicon 2001; 39: 1809–1813
  • Craik D. J., Daly N. L., Bond T., Waine C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 1999; 294: 1327–1336
  • Craik D. J., Daly N. L., Waine C. The cystine knot motif in toxins and implications for drug design. Toxicon 2001; 39: 43–60
  • Craik D. J., Simonsen S., Daly N. L. The cyclotides: novel macrocyclic peptides as scaffolds in drug design. Curr. Opin. Drug Discov. Dev. 2002a; 5: 251–260
  • Craik D. J., Anderson M. A., Barry D. G., Clark R. J., Daly N. L., Jennings C. V., Mulvenna J. Discovery and structures of the cyclotides: novel macrocyclic peptides from plants. Lett. Pept. Sci. 2002b; 8: 119–128
  • Daly N. L., Craik D. J. Acyclic permutants of naturally occurring cyclic proteins. Characterization of cystine knot and beta ‐sheet formation in the macrocyclic polypeptide kalata B1. J. Biol. Chem. 2000; 275: 19068–19075
  • Daly N. L., Love S., Alewood P. F., Craik D. J. Chemical synthesis and folding of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1. Biochemistry 1999a; 38: 10606–10614
  • Daly N. L., Koltay A., Gustafson K. R., Boyd M. R., Casas‐Finet J. R., Craik D. J. Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti‐HIV activity. J. Mol. Biol. 1999b; 285: 333–345
  • Dawson P. E., Muir T. W., Clark‐Lewis I., Kent S. B. Synthesis of proteins by native chemical ligation. Science 1994; 266: 776–779
  • Deechongkit S., Kelly J. W. The effect of backbone cyclization on the thermodynamics of beta‐sheet unfolding: stability optimization of the PIN WW domain. J. Am. Chem. Soc. 2002; 124: 4980–4986
  • Derua R., Gustafson K. R., Pannell L. K. Analysis of the disulfide linkage pattern in circulin A and B, HIV‐inhibitory macrocyclic peptides. Biochem. Biophys. Res. Commun. 1996; 228: 632–638
  • Evans T. C., Jr., Benner J., Xu M. Q. The cyclization and polymerization of bacterially expressed proteins using modified self‐splicing inteins. J. Biol. Chem. 1999; 274: 18359–18363
  • Evans T. C., Jr., Martin D., Kolly R., Panne D., Sun L., Ghosh I., Chen L., Benner J., Liu X. Q., Xu M. Q. Protein trans‐splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J. Biol. Chem. 2000; 275: 9091–9094
  • Felizmenio‐Quimio M. E., Daly N. L., Craik D. J. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J. Biol. Chem. 2001; 276: 22875–22882
  • Galvez A., Gimenez‐Gallego G., Maqueda M., Valdivia E. Purification and amino acid composition of peptide antibiotic AS‐48 produced by Streptococcus (Enterococcus) faecalis subsp. liquefaciens S‐48. Antimicrob. Agents Chemother. 1989; 33: 437–441
  • Galvez A., Valdivia E., Martinez M., Maqueda M. Effect of peptide AS‐48 on Enterococcus faecalis subsp. liquefaciens S‐47. Antimicrob. Agents Chemother. 1989; 33: 641–645
  • Göransson U., Luijendijk T., Johansson S., Bohlin L., Claeson P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod. 1999; 62: 283–286
  • Gran L. An oxytocic principle found in Oldenlandia affinis DC. Medd. Nor. Farm. Selsk. 1970; 12: 173–180
  • Gran L. Oxytocic principles of Oldenlandia affinis. Lloydia 1973a; 36: 174–178
  • Gran L. Isolation of oxytocic peptides from Oldenlandia affinis by solvent extraction of tetraphenylborate complexes and chromatography on sephadex LH‐20. Lloydia 1973b; 36: 207–208
  • Gran L. On the effect of a polypeptide isolated from “Kalata‐Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharm. Toxicol. 1973c; 33: 400–408
  • Gustafson K. R., Sowder R. C., II, Henderson L. E., Parsons I. C., Kashman Y., Cardellina J. H., II, McMahon J. B., Buckheit R. W., Jr., Pannell L. K., Boyd M. R. Circulins A and B: novel HIV‐inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J. Am. Chem. Soc. 1994; 116: 9337–9338
  • Hallock Y. F., Sowder R. C.I., Pannell L. K., Hughes C. B., Johnson D. G., Gulakowski R., Cardellina J. H.I., Boyd M. R. Cycloviolins A‐D, anti‐HIV macrocyclic peptides from Leonia cymosa. J. Org. Chem. 2000; 65: 124–128
  • Hernandez J. F., Gagnon J., Chiche L., Nguyen T. M., Andrieu J. P., Heitz A., Trinh Hong T., Pham T. T., Le Nguyen D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 2000; 39: 5722–5730
  • Hutchinson E. G., Thornton J. M. PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci. 1996; 5: 212–220
  • Iwai H., Pluckthun A. Circular beta‐lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 1999; 459: 166–172
  • Jennings C., West J., Waine C., Craik D., Anderson M. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 10614–10619
  • Kinsella T. M., Ohashi C. T., Harder A. G., Yam G. C., Li W., Peelle B., Pali E. S., Bennett M. K., Molineaux S. M., Anderson D. A., Masuda E. S., Payan D. G. Retrovirally delivered random cyclic Peptide libraries yield inhibitors of interleukin‐4 signaling in human B cells. J. Biol. Chem. 2002; 277: 37512–37518
  • Korsinczky M. L., Schirra H. J., Rosengren K. J., West J., Condie B. A., Otvos L., Anderson M. A., Craik D. J. Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI‐1 from sunflower seeds and an acyclic permutant. J. Mol. Biol. 2001; 311: 579–591
  • Lindholm P., Göransson U., Johansson S., Claeson P., Gulbo J., Larsson R., Bohlin L., Backlund A. Cyclotides: a novel type of cytotoxic agents. Mol. Cancer Ther. 2002; 1: 365–369
  • Martinez‐Bueno M., Maqueda M., Galvez A., Samyn B., Van Beeumen J., Coyette J., Valdivia E. Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS‐48. J. Bacteriol. 1994; 176: 6334–6339
  • Noren C. J., Wang J., Perler F. B. Dissecting the chemistry of protein splicing and its applications. Angew. Chem., Int. Ed. Engl. 2000; 39: 450–466
  • Rosengren K. J., Daly N. L., Plan M. R., Waine C., Craik D. J. Twists, knots and rings in proteins: structural definition of the cyclotide framework. J. Biol. Chem., 278(10)8606–8616
  • Saether O., Craik D. J., Campbell I. D., Sletten K., Juul J., Norman D. G. Elucidation of the primary and three‐dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995; 34: 4147–4158
  • Samyn B., Martinez‐Bueno M., Devreese B., Maqueda M., Galvez A., Valdivia E., Coyette J., Van Beeumen J. The cyclic structure of the enterococcal peptide antibiotic AS‐48. FEBS Lett. 1994; 352: 87–90
  • Schöpke T., Hasan Agha M. I., Kraft R., Otto A., Hiller K. Hämolytisch aktive komponenten aus Viola tricolor L. und Viola arvensis Murray. Sci. Pharm. 1993; 61: 145–153
  • Scott C. P., Abel‐Santos E., Wall M., Wahnon D. C., Benkovic S. J. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 13638–13643
  • Skjeldal L., Gran L., Sletten K., Volkman B. F. Refined structure and metal binding site of the kalata B1 peptide. Arch. Biochem. Biophys. 2002; 399: 142–148
  • Tam J. P., Lu Y.‐A. Synthesis of large cyclic cystine‐knot peptide by orthogonal coupling strategy using unprotected peptide precursors. Tetrahedron Lett. 1997; 38: 5599–5602
  • Tam J. P., Lu Y.‐A. A biomimetic strategy in the synthesis and fragmentation of cyclic protein. Protein Sci. 1998; 7: 1583–1592
  • Tam J. P., Lu Y.‐A., Yu Q. Thia zip reaction for synthesis of large cyclic peptides: mechanisms and applications. J. Am. Chem. Soc. 1999a; 121: 4316–4324
  • Tam J. P., Lu Y. A., Yang J. L., Chiu K. W. An unusual structural motif of antimicrobial peptides containing end‐to‐end macrocycle and cystine‐knot disulfides. Proc. Natl. Acad. Sci. U. S. A. 1999b; 96: 8913–8918
  • Trabi M., Craik D. J. Circular proteins—no end in sight. Trends Biochem. Sci. 2002; 27: 132–138
  • Williams N. K., Prosselkov P., Liepinsh E., Line I., Sharipo A., Littler D. R., Curmi P. M., Otting G., Dixon N. E. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini‐intein. J. Biol. Chem. 2002; 277: 7790–7798
  • Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 1992; 31: 1647–1651
  • Witherup K. M., Bogusky M. J., Anderson P. S., Ramjit H., Ransom R. W., Wood T., Sardana M. A biologically active, 31‐residue cyclic peptide isolated from Psychotria Longipes. J. Nat. Prod. 1994; 57: 1619–1625
  • Wüthrich K. NMR of Proteins and Nucleic Acids. Wiley‐Interscience, New York 1986
  • Zablotna E., Kazmierczak K., Jaskiewicz A., Stawikowski M., Kupryszewski G., Rolka K. Chemical synthesis and kinetic study of the smallest naturally occurring trypsin inhibitor SFTI‐1 isolated from sunflower seeds and its analogues. Biochem. Biophys. Res. Commun. 2002; 292: 855–859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.