50
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Sensory adaptation as Kalman filtering: theory and illustration with contrast adaptation

&
Pages 465-482 | Received 01 Oct 2002, Published online: 09 Jul 2009

References

  • Anstis S. Adaptation to peripheral flicker. Vis. Res. 1996; 36: 3479–85
  • Atick J J, Redlich A N. What does the retina know about natural scenes?. Neural Comput. 1992; 4: 196–210
  • Balboa R M, Grzywacz N M. The role of early retinal lateral inhibition: more than maximizing luminance information. Vis. Neurosci. 2000a; 17: 77–89
  • Balboa R M, Grzywacz N M. The minimal-local asperity hypothesis of early retinal lateral inhibition. Neural Comput. 2000b; 12: 1485–517
  • Balboa R M, Grzywacz N M. Occlusions and their relationship with the distribution of contrasts in natural images. Vis. Res. 2000c; 40: 2661–9
  • Baylor D A, Lamb T D, Yau K W. Responses of retinal rods to single photons. J. Physiol. 1979; 288: 613–34
  • Benardete E A, Kaplan E. The receptive field of the primate P retinal ganglion cell, I: linear dynamics. Vis. Neurosci. 1997; 14: 169–85
  • Benardete E A, Kaplan E, Knight B W. Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Vis. Neurosci. 1992; 8: 483–6
  • Berger J O. Statistical Decision Theory and Bayesian Analysis. Springer, New York 1985
  • Brown S P, Masland R H. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat. Neurosci. 2001; 4: 44–51
  • Burgi P Y, Yuille A L, Grzywacz N M. Probabilistic motion estimation based on temporal coherence. Neural Comput. 2000; 12: 1839–67
  • Chander D, Chichilnisky E J. Adaptation to temporal contrast in primate and salamander retina. J. Neurosci. 2001; 21: 9904–16
  • Dahari R, Spitzer H. Spatiotemporal adaptation model for retinal ganglion cells. J. Opt. Soc. Am. A 1996; 13: 419–35
  • Datum M S, Palmieri F, Moiseff A. An artificial neural network for sound localization using binaural cues. J. Acoust. Soc. Am. 1996; 100: 372–83
  • Dayan P, Abbott L F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA 2001
  • de Juan J, García M. Spinules and nematosomes in retinal horizontal cells: a ‘thorny’ issue. Prog. Brain Res. 2001; 131: 519–36
  • de Juan J, García M, Cuenca N. Formation and dissolution of spinules and changes in nematosome size require optic nerve integrity in black bass (Micropterus salmoides), retina. Brain Res. 1996; 707: 213–20
  • de Juan J, Sáez F, García M, Rallegue R, Sánchez-Vázquez F J. Ocular melatonin is not involved in cone elongation in natural conditions in sea bass (Dicentrarchus labrax), retina. Invest. Ophthalmol. Vis. Sci. 1999; 40: S611
  • DeMarco P J, Jr, Brigell M G, Gordon M. The peripheral flicker effect: desensitization of the luminance pathway by static and modulated light. Vis. Res. 1997; 37: 2419–25
  • de Monasterio F M. Properties of concentrically organized X and Y ganglion cells of macaque retina. J. Neurophysiol. 1978; 41: 1394–417
  • DeWeese M, Zador A. Asymmetric dynamics in optimal variance adaptation. Neural Comput. 1998; 10: 1179–202
  • Djamgoz M B A, Downing J E G, Kirsch M, Prince D J, Wagner H J. Plasticity of cone horizontal cell function in cyprinid fish retina: effects of background illumination of moderate intensity. J. Neurocytol. 1988; 17: 701–10
  • Fairhall A L, Lewen G D, Bialek W, de Ruyter Van Steveninck R R. Efficiency and ambiguity in an adaptive neural code. Nature 2001; 412: 787–92
  • Field D J. What is the goal of sensory coding?. Neural Comput. 1994; 6: 559–601
  • Freeman A W, Badcock D R. Visual sensitivity in the presence of a patterned background. J. Opt. Soc. Am. A 1999; 16: 979–86
  • Fuortes M G F, Yeandle S. Probability of occurrence of discrete potential waves in the eye of the Limulus. J. Physiol. 1964; 47: 443–63
  • Garcia M, Grzywacz N M, De Juan J. Interocular effect of intravitreal injection of 6-hydroxydopamine and dopamine on spinule formation in teleost retina. Histol. Histopathol. 2002; 17: 721–9
  • Gray-Keller M P, Detwiler P B. The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 1994; 13: 849–61
  • Grzywacz N M, Balboa R M. A Bayesian framework for sensory adaptation. Neural Comput. 2002; 14: 543–59
  • Hackos D H, Korenbrot J I. Calcium modulation of ligand affinity in the cyclic GMP-gated ion channels of cone photoreceptors. J. Gen. Physiol. 1997; 110: 515–28
  • Heinrich T S, Bach M. Contrast adaptation in human retina and cortex. Invest. Ophthalmol. Vis. Sci. 2001; 42: 2721–7
  • Ho Y C, Lee R C K. A Bayesian approach to problems in stochastic estimation and control. IEEE Trans. Autom. Control 1964; 9: 333–9
  • Hochstein S, Shapley R M. Quantitative analysis of retinal ganglion cell classifications. J. Physiol. 1976; 262: 237–64
  • Isard M, Blake A. Contour tracking by stochastic propagation of conditional density. Proc. Eur. Conf. on Comput. Vision, CambridgeUK, 1996; 343–56
  • Kalman R E. A new approach to linear altering and prediction problems. Basic Eng. 1960; 82: 35–45
  • Kim K J, Rieke F J. Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. Neurosci. 2001; 21: 287–99
  • Koch K W, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 1988; 344: 64–6
  • Lagnado L, Baylor D A. Calcium controls light-triggered formation of catalytically active rhodopsin. Nature 1994; 367: 273–7
  • Laughlin S B. The role of sensory adaptation in the retina. J. Exp. Biol. 1989; 146: 39–62
  • Lee B B. Receptive field structure in the primate retina. Vis. Res. 1996; 36: 631–44
  • Levanen S, Sams M. Disrupting human auditory change detection: Chopin is superior to white noise. Psychophysiology 1997; 34: 258–65
  • Matthews H R, Fain G L, Murphy R L W, Lamb T D. Light adaptation in cone photoreceptors of the salamander: a role for cytoplasmic calcium. J. Physiol. 1990; 420: 447–79
  • Merwine D K, Amthor F R, Grzywacz N M. Interaction between center and surround in rabbit retinal ganglion cells. J. Neurophysiol. 1995; 73: 1547–67
  • Nakatani K, Yau K W. Calcium and light adaptation in retinal rods and cones. Nature 1988; 334: 69–71
  • Nelder J A, Mead R. A simplex method for function minimization. Comput. J. 1965; 7: 308–13
  • Pugh E N, Jr, Lamb T D. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors. Vis. Res. 1990; 30: 1923–48
  • Rao R P. An optimal estimation approach to visual perception and learning. Vis. Res. 1999; 39: 1963–89
  • Rao R P, Ballard D H. Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput. 1997; 9: 721–63
  • Raynauld J P, Laviolette J R, Wagner H J. Goldfish retina: a correlate between cone activity and morphology of the horizontal cell in cone pedicles. Science 1979; 204: 1436–8
  • Rieke F. Temporal contrast adaptation in salamander bipolar cells. J. Neurosci. 2001; 21: 9445–54
  • Ruderman D L, Bialek W. Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 1994; 73: 814–17
  • Rushton W A H. The intensity factor in vision. Light and Life, W D McElroy, H B Glass. Johns Hopkins University Press, Baltimore, MD 1961; 706–22
  • Smirnakis S M, Berry M J, Warland D K, Bialek W, Meister M. Adaptation of retinal processing to image contrast and spatial scale. Nature 1997; 386: 69–73
  • Srinivasan M V, Laughlin S B, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. B 1982; 216: 427–59
  • Stelmach L B, Bourassa C M, Di Lollo V. Detection of stimulus change: the hypothetical roles of visual transient responses. Percept. Psychophys. 1984; 35: 245–55
  • Sum J, Leung C S, Young G H, Chan L W, Kan W K. An adaptive Bayesian pruning for neural networks in a non-stationary environment. Neural Comput. 1999; 11: 965–76
  • Thorson J, Biederman-Thorson M. Distributed relaxation processes in sensory adaptation. Science 1974; 183: 161–72
  • Tranchina D, Gordon J, Shapley R, Toyoda J. Linear information processing in the retina: a study of horizontal cell responses. Proc. Natl Acad. Sci. USA 1981; 78: 6540–2
  • Tyler C W, Liu L. Saturation revealed by clamping the gain of the retinal light response. Vis. Res. 1996; 36: 2553–62
  • Victor J D. The dynamics of the cat retinal X cell centre. J. Physiol. 1987; 386: 219–46
  • Weiler R, Wagner H J. Light-dependent change of cone horizontal cell interactions in carp retina. Brain Res. 1984; 298: 1–9
  • Werblin F, Maguire G, Lukasiewicz P, Eliasof S, Wu S M. Neural interactions mediating the detection of motion in the retina of the tiger salamander. Vis. Neurosci. 1988; 1: 317–29
  • Zar J H. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ 1984
  • Zhu S C, Mumford D. Prior learning and Gibbs reaction-diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1997; 19: 1236–50
  • Zucker C L, Dowling J E. Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost reti. Nature 1987; 330: 166–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.