11
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Information processing and neuromodulation in the visual system of frogs and toads

Pages 71-88 | Received 21 Oct 1991, Published online: 09 Jul 2009

References

  • Anderson P, Anderson S A. Physiological basis of the alpha rhythm. Meredith Corporation, New York 1968
  • Arbib M A. Visuomotor Coordination-Neural models and perceptual robotics. Visuomotor coordination: Amphibians, comparisons models and robots, J P Ewert, M A Arbib. Plenum, New York 1989; 121–171
  • Borchers H W, Ewert J P. Correlation between behavioural and neuronal activities of toads (Bufo bufo L,) in response to moving configurational prey stimuli. Behav. Processes 1979; 4: 99–106
  • Bowman C L, Kimelberg H K. Excitatory amino acids directly depolarise rat brain astrocytes in primary culture. Nature 1984; 311: 656–659
  • Cervantez-Perez F, Lara R, Arbib M A. A neural model of interactions subserving pre-predator discrimination and size preference in anuran amphibia. J. Theor. Biol. 1985; 113: 117–152
  • Cohen M W. The contribution of glial cells to surface recordings from the optic nerve of an amphibian. J. Physiol. 1970; 210: 565–580
  • Creutzfeldt O, Houchin J. Neuronal basis of EEG waves. Handbook of electroencephalography and clinical neurophysiology, Redmond A. Elsevier, Amsterdam 1974; 2: 5–55
  • Didday R L. A model of visuomotor mechanisms in the frog optic tectum. Math. Biosci. 1976; 30: 169–180
  • Durkovic R G, Cohen D H. DC potential activity in a nervous system lacking neocortex: the pigeon telencephalon. Anatomical Record 1966; 154: 341
  • Durkovic R G, Cohen D H. Spontaneous, evoked and defensively conditioned steady potential changes in the pigeon telencephalon. Electroenceph. and Clin. Neurophysiol. 1968; 24: 474–481
  • Eibl-Eibesfeldt I. Narungserwerb und Beuteschema der Erdkrote. Bufo bufo L Behaviour 1951; 4: 1–35
  • Elul R. The genesis of the EEG. International Review of Neurobiology, C C Pfeiffer, J R Smythies. Academic, New York, London 1972; 15: 228–272
  • Ewert J P. Der Einflus von Zwischenkirn-defecten auf die Visuomotorik in Beute und Fluchverhalten der Erdkrote. (Bufo bufo L) Z. vergl. Physiol. 1968; 61: 41–70
  • Ewert J P. Neuroethology: An introduction to the neurophysiological fundamentals of behaviour. Springer, Berlin, New York 1980
  • Ewert J P. The release of visual behaviour in toads: Stages of Parallel/Hierarchical information processing. Visuomotor coordination: Amphibians, comparisons models and robots, J P Ewert, M A Arbib. Plenum, New York 1989; 39–120
  • Ewert J P, Arend B, Becker V, Borchers H W. Invariants in configurational prey selection by. Bufo bufo L Brain Behav. Evol. 1979; 16: 38–57
  • Ewert J P, Burghagan H, Schurg-Pfeiffer E. Neuroethological analysis of the innate releasing mechanism for prey catching behaviour in toads. Advances in vertebrate Neuroethology, J P Ewert, R R Capranica, D J Ingle. Plenum, New York 1983; 413–475
  • Ewert J P, von Wietersheim. Musterausaertung durch Tectum und Thalamus/Praetectum-neurone im visuellen System der Krote. (Bufo bufo L) J. Comp. Physiol. 1974; 92: 131–148
  • Finkenstadt T. Visual associative learning: Searching for behaviourally relevant brain structures in toads. Visuomotor coordination: Amphibians comparisons models and robots, J P Ewert, M A Arbib. Plenum, New York 1989; 799–832
  • Finkenstadt T, Ewert J P. Stimulus-specific long-term habituation of visually guided orienting behaviour toward prey in toads: a 14C-2DG study. J. Comp. Physiol. 1988; 163: 1–11
  • Fox S S, Norman R J. Functional congruence: an index of neural homogeneity and a new measure of brain activity. Science 1968; 159: 1257–1259
  • Frost J D, Jr, Gol A. Computer determination of relationships between EEG activity and single unit discharges in isolated cerebral cortex. Exp. Neurology 1966; 14: 506–519
  • Futamachi K J, Pedley T A. Glial cells and extracellular potassium: their relationship in mammalian cortex. Brain Res. 1976; 109: 311–322
  • Gardner-Medwin A R. Analysis of potassium dynamics in mammalian brain tissue. J. Physiol. 1983; 335: 393–426
  • Grobstein P. Strategies for analysing complex organisation in the nervous system. II. A case study directed movement and spatial representation in the frog. Systems development foundation benchmark series in computational neuroscience, E Schwartz. MIT, Cambridge, Ma 1989
  • Gumnit R J. The distribution of direct current responses evoked by sounds in the auditory cortex of the cat. Electroenceph. Clin. Neurophysiol. 1961; 13: 889–895
  • Gutnick M J, Connors B W, Ransom B R. Dye coupling between glial cells in the guinea pig neocortical slice. Brain Res. 1981; 213: 486–492
  • Heinemann U, Konnerth A, Lux H D. Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res. 1981; 213: 246–250
  • Hertz L. Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature 1965; 206: 1091–1094
  • Hobson J A. Respiration and EEG synchronisation in the frog. Nature 1967; 213: 988–989
  • Hodgkin A L, Huxley A F. Currents carried by sodium and potassium ions through the membrance of the giant axon of. Loligo J. Physiol. 1952; 116: 449–472
  • Hodgkin A L, Keynes R D. Active transport of cations in giant axons from Sepia, and Loligo. J. of Physiol. (London) 1955; 128: 28–60
  • Hubbard J I, Llinas R, Quastel D M J. Electrophysiological analysis of synaptic transmission. Monographs of the physiological society. Edward Arnold, London 1969
  • Jakobsson E, Guttmann R. Continuous stimulation and threshold of axons. The biophysical approach to excitable systems, W J Adelman Jnr, D E Goldman. Plenum, New York, London 1981; 197–213
  • Kelly J P, Van Essen D C. Cell structures and function in the visual cortex of the cat. J. Physiol. 1974; 238: 515–547
  • King J S. A comparative investigation of neuroglia in representative vertebrates. J Morphology 1966; 119: 435–466
  • Kohler W, Wegener J. Currents of the human auditory cortex. J. Cellular and Comp. Physiol. 1955; 25–54, Suppl 1
  • Kuffler S. Neuroglial cells: physiological properties and a potassium-mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. 1967; B 168: 1–21
  • Kuffler S W, Nicholls J G, Orkand R K. Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 1966; 29: 768–787
  • Laming P R. Electroencephalographic correlates of behavior in the anurans. Bufo regularis, and Rana temporaria Behav. and Neural Biol. 1982; 34: 296–306
  • Laming P R. Relationship between the responses of visual units, EEGS and slow potential shifts in the tectum of the toad. Bufo bufo Advances in Vertebrate Neuroethology, J P Ewert, R R Capranica, D J Ingle. Plenum, London 1983; 595–603
  • Laming P R. Central representation of arousal. Visuomotor coordination: Amphibians comparisons models and robots, J P Ewert, M A Arbib. Plenum, New York, London 1989; 693–727
  • Laming P R, Ewert J P. The effects of pretectal lesions on neuronal, sustained potential shift and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comp. Biochem. Physiol. 1983; 76A(2)247–252
  • Laming P R, Ewert J P. Visual unit, EEG and sustained potential shift responses to biologically significant stimuli in the brain of toads. (Bufo bufo) J. Comp. Physiol. 1984; 154: 89–101
  • Laming P R, Borchers H W, Ewert J P. a Visual unit, EEG and sustained potential shift responses in the brains of toads (Bufo bufo) during alert and defensive behavior. Physiol. Behav. 1984; 32: 463–468
  • Laming P R, Ewert J P, Borchers H W. b The effects of telencephalic ablation on unit, EEG and sustained potential shift responses of the toad tectum to a visual stimulus. Behav. Neurosci. 1984; 98: 118–124
  • Laming P R, Bullock T H, McClune M C. Sustained potential shifts and changes in acoustic evoked potentials after presentation of a non-acoustic priming stimulus to carp. (Cyprinus carpio) Comp. Biochem. Physiol 1991; 100A(1)95–104
  • Lara R, Arbib M A. A neural model of interaction between tectum and pretectum in prey selection. Cognition and Brain Theory 1982; 5: 149–171
  • Laufer M, Verzeano M. Periodic activity in the visual system of the cat. Vision Res. 1967; 7: 215–219
  • Lazar G. Cellular architecture and connectivity of the frog's optic tectum and pretectum. Visuomotor coordination: Amphibians comparisons, models and robots, J P Ewert, M A Arbib. Plenum, London, New York 1987; 175–199
  • Lickey M E, Fox S S. Localisation and habituation of sensory evoked DC responses in cat cortex. Exp. Neurol. 1966; 15: 437–454
  • Loveless N E. Event-related slow potentials of the brain as expressions of orienting function. The orienting reflex in humans, H D Kimmel, E M Van Olst, J F Orlebeke. Erlbaum, Hillsdale 1979
  • Northcutt R G, Kicliter E. Organisation of the amphibian telencephalon. Comparative Neurology of the telencephalon, S O E Ebbesson. Plenum, New York 1980; 203–255
  • O'Leary J L, Goldring S. DC potentials of the brain. Physiol. Rev. 1964; 44: 91–125
  • Orkand R K, Nicholls J G, Kuffler S W. The effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 1966; 29: 788–806
  • Pope A. Neuroglia: Quantitative aspects. Dynamic properties of glial cells, E Schoffeniels, G Franck, L Hertz, D B Tower. Pergamon, Oxford, New York 1978; 13–20
  • Pribram K H, McGuinness D. Arousal activation and effort in the control of attention. Psychol. Rev. 1975; 82: 116–149
  • Quick I A, Laming P R. Relationship between ECG, EEG and SPS responses during arousal in the goldfish. (Carassius auratus) Comp. Biochem. Physiol. 1990; 95A(3)459–471
  • Rakic P, Stensaas L J, Sayre E P, Sidman R L. Computer aided three dimensional reconstruction and quantitative analysis of cells from serial electron microscope montages of fetal monkey brain. Nature 1974; 250: 31–34
  • Rakic P. Emergence of neuronal and glial cell lineages in primate bra. Cellular and Molecular Biology of Neuronal Development, I B Black. Plenum, New York 1984; 29–50
  • Ransom B R, Goldring S. a Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 1973; 36: 855–868
  • Ransom B R, Goldring S. b Slow depolarisation in cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 1973; 36: 869–878
  • Ransom B R, Goldring S. c Slow hyperpolarisation in cells presumed to be glia in cerebral cortex of cat. J. Neurophysiol. 1973; 36: 879–892
  • Roitbak A I, Fanardjhyan V V, Melkonyan D S, Melkonyan A A. Glial origin of slow negative potential of the cortical direct response. Neirofiziologiia 1982; 14: 76–84
  • Roitbak A I, Ocherashvili E V, Laming P R, Roitbak T A. Stimulus-evoked sustained potential shifts and changes in [K+]e of the frog optic tectum. J. Comp. Physiol. 1992, at press
  • Rowland V. Cortical steady potential Direct Current Potential) in Reinforcement and Learning. Progress in Physiological Psychology, J M E Stellar, Sprague. Academic, New York 1968; 2: 2–77
  • Rowland V, Goldstone M. Appetitively conditioned and drive-related bioelectric baseline shift in cat cortex. Electroenceph. Clin. Neurophysiol. 1963; 15: 474–485
  • Rowland V, Bradley H, School P, Deutschman D. Cortical steady potential shifts in conditioning. Cond. Reflex 1967; 2: 3–22
  • Satou M, Ewert J P. The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad. Bufo bufo L J. Comp. Physiol. 1985; 157: 739–748
  • Segura E T, De Juan A. Electroencephalographic studies in toads. Electroenceph. Clin. Neurophysiol. 1966; 21: 373–380
  • Shaefor P J, Rowland V. Dissociation of cortical steady potential shifts from mass action potentials in cats awaiting food rewards. Physiol. Psychol. 1974; 2: 471–480
  • Verzeano M. Pacemakers, synchronisation and epilepsy. Synchronisation of EEG activity in Epilepsies, H Petsche, M A Brazier. Springer, Wien, New York 1972; 154–188
  • Verzeano M, Laufer M, Spear P, McDonald S. The activity of neuronal networks in the thalamus of the monkey. Biology of Memory, K Pribram, D E Broadbent. Academic, New York 1970; 239–271

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.