170
Views
74
CrossRef citations to date
0
Altmetric
Original Article

Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus

&
Pages 159-178 | Received 23 Nov 1994, Published online: 09 Jul 2009

References

  • Atick J J. Entropy minimization: a design principle for sensory perception. Int. J. Neural Systems 1992a; 3: 81–90
  • Atick J J. Could information theory provide an ecological theory of sensory processing?. Network 1992b; 3: 213–51
  • Atick J J, Redlich A N. Towards a theory of early visual processing. Neural Comput. 1990; 2: 308–20
  • Atick J J, Redlich A N. What does the retina know about natural scenes?. Neural Comput. 1992; 4: 196–210
  • Atick J J, Li Z, Redlich A N. Understanding retinal colour coding from first principles. Neural Comput. 1992; 4: 559–72
  • Atick J J, Li Z, Redlich A N. What does post-adaptation colour appearance reveal about cortical colour representation. Vision Res. 1993; 33: 123–9
  • Attneave F. Some informational aspects of visual perception. Psychol. Rev. 1954; 61: 183–93
  • Barlow H B. Possible principles underlying the transformation of sensory messages. Sensory Communication, R A Rosenblith. MIT Press, Cambridge, MA 1961
  • Barlow H B. Unsupervised learning. Neural Comput. 1989; 1: 295–311
  • Bode H. Network Analysis and Feedback Amplifier Design. Van Nostrand Reinhold, Princeton, NJ 1945
  • Cleland B G, Dubin M W, Levick W R. Sustained and transient neurons in the cat's retina and lateral geniculate nucleus. J. Physiol. (Lond.) 1971; 217: 473–96
  • Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl Acad. Sci. USA 1984; 81: 4586–90
  • Dong D W. Anti-Hebbian dynamics and total recall of associative memory. Proc. World Congress on Neural Networks, , ORPortland. Erlbaum, Hillsdale, NJ 1993a; 2: 275–9
  • Dong D W. Associative decorrelation dynamics in visual cortex. Lawrence Berkeley Laboratory Technical Report 1993b, LBL-34491
  • Dong D W. Associative decorrelation dynamics: a theory of self-organization and optimization in feedback networks. Advances in Neural Information Processing Systems 7, D S Touretzky, G Tesauro, T K Leen. MIT Press, Cambridge, MA 1994; 925–32
  • Dong D W, Atick J J. Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus (LGN). Soc. Neurosci. Abstr. 1994; 20: 7
  • Dong D W, Atick J J. Statistics of natural time-varying images. Network 1995, submitted
  • Field D J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 1987; 4: 2379–94
  • Hancock P J B, Baddeley R J, Smith L S. The principal components of natural images. Network 1992; 3: 61–70
  • Harth E, Unnikrishnan K P. Brainstem control of sensory information: A mechanism for perception. Int. J. Psychophys. 1985; 3: 101–19
  • Hartveit E. Simultaneous recording of lagged and nonlagged cells in the cat dorsal lateral geniculate-nucleus. Exp. Brain Res. 1992; 88: 229–32
  • Hartveit E, Heggelund P. Brain-stem influence on visual response of lagged and nonlagged cells in the cat lateral geniculate-nucleus. Vis. Neurosi. 1993; 10: 325–39
  • Hubel D H, Wiesel T N. Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 1961; 155: 385–98
  • Humphrey A L, Saul A B. Action of brain-stem reticular afferents on lagged and nonlagged cells in the cat lateral geniculate-nucleus. J. Neurophysiol. 1992; 68: 673–91
  • Humphrey A L, Weller R E. Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat. J. Comp. Neurol. 1988; 268: 448–68
  • Kaplan E, Mukherjee P, Shapley R M. Information filtering in the lateral geniculate nucleus. Contrast Sensitivity, R M Shapley, D Lam. MIT Press, Cambridge, MA 1993; 183–200
  • Kaplan E, Shapley R. What controls information processing in the LGN?. Soc. Neurosci. Abstr. 1982; 8: 405
  • Lee Y W. Statistical Theory of Communication. Wiley, New York, NY 1960
  • Levine M W, Troy J B. The variability of the maintained discharge of cat dorsal lateral geniculate cells. J. Physiol. (Lond.) 1986; 375: 219–46
  • Li Z. Different retinal ganglion cells have different functional goals. Int. J. Neural Systems 1992; 3: 237–48
  • Li Z, Atick J J. Efficient stereo coding in the multiscale representation. Network 1994; 5: 1–18
  • Linsker R. An application of the principle of maximum information preservation to linear systems. Advances in Neural Information Processing Systems 1, D S Touretzky. Morgan Kaufmap, San Mateo, CA 1989; 186–94
  • Mastronarde D N. Two classes of single-input X-cells in cat lateral geniculate nucleus I. Receptive-field properties and classification of cells. J. Neurophysiol. 1987a; 57: 357–80
  • Mastronarde D N. Two classes of single-input X-cells in cat lateral geniculate nucleus: II. Retinal inputs and the generation of receptive-field properties. J. Neurophysiol. 1987b; 57: 381–413
  • Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes: the Art of Scientific Computing. Cambridge University Press, Cambridge 1988
  • Ruderman D L, Bialek W. Statistics of natural images: Scaling in the woods. Advances in Neural Information Processing Systems 6, J D Cowan, G Tesauro, J Alspector. Morgan Kaufman, San Mateo, CA 1994
  • Saul A B, Humphrey A L. Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate-nucleus. J. Neurophysiol. 1990; 64: 206–24
  • Saul A B, Humphrey A L. Evidence of input from lagged cells in the lateral geniculate nucleus to simple cells in cortical area 17 of the cat. J. Neurophysiol. 1992; 68: 1190–208
  • Sherman S M, Koch C. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp. Brain Res. 1986; 63: 1–20
  • Singer W. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Phys. Rev. 1977; 57: 386–420
  • Singer W, Creutzfeldt O D. Reciprocal lateral inhibition of on- and off-centre neurons in the lateral geniculate body of the cat. Exp. Brain Res. 1970; 10: 311–30
  • So Y T, Shapley R. Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs. Exp. Brain Res. 1979; 36: 533–50
  • Uhlrich D J, Tamamaki N, Sherman S M. Brainstem control of response modes in neurons of the cat's lateral geniculate nucleus. Proc. Natl Acad. Sci. USA 1990; 87: 2560–3
  • Van Essen D C, Anderson C C. Information processing strategies and pathways in the primate retina and visual cortex. Introduction to Neural and Electronic Networks, S F Zotnetzer, J L Davis, C Lau. Academic Press, Orlando, FL 1990
  • Victor J D. The dynamics of the cat retinal X cell centre. J. Physiol. (Lond.) 1987; 386: 219–46
  • Wehmeier U, Dong D W, Koch C, Van Essen D C. Modeling the mammalian visual system. Methods in Neuronal Modeling: from Synapses to Networks, C Koch, I Segev. MIT Press, Cambridge, MA 1989; 335–60
  • Zweig G. Basilar membrane motion. Cold Spring Harbor Symposia on Quantitative Biology 6. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1976; 619–33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.