30
Views
22
CrossRef citations to date
0
Altmetric
Original Article

Low spiking rates in a population of mutually exciting pyramidal cells

&
Pages 271-288 | Received 07 Nov 1994, Published online: 09 Jul 2009

References

  • Abeles M, Vaadia E, Bergman H. Firing patterns of single units in the prefrontal cortex and neural network models. Network 1990; 1: 13–25
  • Adams P R. The platonic neuron gets the hots. Current Biol. 1992; 2: 625–27
  • Amit D J, Evans M R, Abeles M. Attractor neural networks with biological probe records. Network 1990; 1: 381–405
  • Amit D J, Treves A. Associative memory neural network with low temporal spiking rates. Proc. Natl Acad. Sci. USA 1989; 86: 7871–5
  • Amit D J, Tsodyks M V. Quantitative study of attractor neural network retrieving at low spike rates: I. Substrate—spikes, rates and neuronal gain. Network 1991a; 2: 259–73
  • Amit D J, Tsodyks M V. Quantitative study of attractor neural network retrieving at low spike rates: II. Low-rate retrieval in symmetric networks. Network 1991b; 2: 275–94
  • Andersen P. Factors influencing the efficiency of dendritic synapses on hippocampal pyramidal cells. Neurosci. Res. 1986; 3: 521–30
  • Anderson P. Synaptic integration in hippocampal CA1 pyramids. Prog. Brain Res. 1990; 83: 215–22
  • Bernander Ö, Douglas R J, Koch C. A model of regular-firing cortical pyramidal neurons. Technical Report. California Institute of Technology, Pasadena, CA 1992, CNS Memo 16 Computation and Neural Systems Program
  • Bernander Ö, Douglas R J, Martin K A C, Koch C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl Acad. Sci. USA 1991; 88: 11569–73
  • Bressler S L, Freeman W J. Frequency analysis of olfactory system EEG in cat, rabbit and rat. Electroenceph. Clin. Neurophysiol. 1980; 50: 19–24
  • Brodin L, Tråvén H, Lansner A, Wallén P, Ekeberg Ö, Grillner S. Computer simulations of N-methyl-D-aspartate (NMDA) receptor induced membrane properties in a neuron model. J. Neurophysiol. 1991; 66: 473–84
  • Buhmann J. Oscillations and low firing rates in associative memory neural networks. Phys. Rev. A 1989; 40: 4145
  • Colino A, Halliwell J V. Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 1987; 328: 73–7
  • Connors B W, Gutnick M J, Prince D A. Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 1982; 48: 1302–20
  • Destexhe A, Mainen Z F, Sejnowski T J. An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput. 1994; 6: 14–8
  • Dinse H R, Krüger K, Best J. A temporal structure of cortical information processing. Concepts Neurosci. 1990; 1: 199–238
  • Douglas R J, Martin K A C. A functional microcircuit for cat visual cortex. J. Physiol. 1991; 440: 735–69
  • Ekeberg Ö. Response properties of a population of neurons. Int. J. Neural Systems 1993; 4: 1–13
  • Ekeberg Ö, Hammarlund P, Levin B, Lansner A. SWIM—A simulation environment for realistic neural network modeling. Neural Network Simulation Environments, J Skrzypek. Kluwer, Dordrecht 1994
  • Ekeberg Ö, Wallén P, Lansner A, Tråvén H, Brodin L, Grillner S. A computer based model for realistic simulations of neural networks. I: The single neuron and synaptic interaction. Biol. Cybern. 1991; 65: 81–90
  • Fransén E, Lansner A. Low spiking rates in a network with overlapping assemblies. The Neurobiology of Computation: Proc. Ann. Computational Neuroscience Meeting, J M Bower. Kluwer, Dordrecht 1995, in press
  • Fransén E, Lansner A, Liljenström H. A model of cortical associative memory based on Hebbian cell assemblies. Computation and Neural Systems, F H Eeckman, J M Bower. Kluwer, Dordrecht 1993; 431–5
  • Freeman W J. EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biol. Cybern. 1979; 35: 221–34
  • Funahashi S, Bruce C J, Goldman-Rakic P S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 1989; 61: 331–49
  • Funahashi S, Bruce C J, Goldman-Rakic P S. Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J. Neurophysiol. 1990; 63: 814–31
  • Fuster J M, Jervey J P. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J. Neurosci. 1982; 2: 361–75
  • Gilbert C D, Hirsch J A, Wiesel T N. Lateral interactions in visual cortex. Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990; LV: 663–76
  • Gustafsson B, Wigström H. Evidence for two types of afterhyperpolarization in CA1 pyramidal cells in the hippocampus. Brain Res. 1981; 206: 462–8
  • Guthrie P B, Segal M, Kater S B. Independent regulation of calcium revealed by imaging dendritic spines. Nature 1991; 354: 76–9
  • Hasselmo M E, Anderson B P, Bower J M. Cholinergic modulation of cortical associative memory function. J. Neurophysiol. 1992; 67: 1230–46
  • Hebb D O. The Organization of Behavior. Wiley, New York 1949
  • Hestrin S, Nicoll R A, and Perkel D J, Sah P. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol. 1990; 422: 203–25
  • Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 1982; 79: 2554–8
  • Koch C, Douglas R, Wehmeier U. Visibility of synaptically induced conductance changes: Theory and simulations of anatomically characterized cortical pyramidal cells. J. Neurosci. 1990; 10: 1728–44
  • Lansner A, Fransén E. Modelling Hebbian cell assemblies comprised of cortical neurons. Network 1992; 3: 105–19
  • Lansner A, Fransén E. Improving the realism of attractor models by using cortical columns as functional units. The Neurobiology of Computation: Proc. Ann. Computational Neuroscience Meeting, J M Bower. Kluwer, Dordrecht 1995, in press
  • Liljenström H, Hasselmo M. Acetylcholine and cortical oscillatory dynamics. Computation and Neural Systems, F H Eeckman, J M Bower. Kluwer, Dordrecht 1993; 523–30
  • Lindström S. 1994, personal communication
  • Madison D V, Nicoll R A. Noradrenaline blocks accomodation of pyramidal cell discharge in the hippocampus. Nature 1982; 299: 636–8
  • Mason A, Larkman A. Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. electrophysiology. J. Neurosci. 1990; 10: 1415–28
  • McCormick D A. Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci. 1989; 12: 215–21
  • McCormick D A, Connors B W, Lighthall J W. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 1985; 54: 782–806
  • Milner P M. The cell assembly: Mark II. Psychol. Rev. 1957; 64: 242–52
  • Miyashita Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 1988; 335: 817–20
  • Miyashita Y, Chang H S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 1988; 331: 68–70
  • Müller W, Connor J A. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 1991; 354: 73–6
  • Nakamura K, Mikami A, Kubota K. Unique oscillatory activity related to visual processing in the temporal pole of monkeys. Neurosci. Res. 1991; 12: 293–9
  • Nicoll R A, Malenka R C, Kauer J A. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev. 1990; 70: 513–65
  • Ogawa T, Ito S, Kato H. Membrane characteristics of visual cortical neurons in in vitro slices. Brain Res. 1981; 226: 315–9
  • Peretto P. An Introduction to the Modeling of Neural Networks. Cambridge University Press, Cambridge 1992
  • Rubin N, Sompolinsky H. Neural networks with low local firing rates. Europhys. Lett. 1989; 10: 465–70
  • Scholfield C N. Electrical properties of neurons in the olfactory cortex in vitro. J. Physiol. 1978; 275: 535–46
  • Shepherd G M, Koch C. Dendritic electrotonus and synaptic integration. The Synaptic Organization of the Brain, G M Shepherd. Oxford University Press, Oxford 1990; 462
  • Stafstrom C E, Schwindt P C, Crill W E. Repetetive firing in layer V neurons from cat neocortex in vitro. J. Neurophysiol. 1984; 52: 264–77
  • Stern P, Edwards F A, Sakmann B. Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J. Physiol. 1992; 449: 247–78
  • Thorpe S, Imbert M. Biological constraints on connectionist modelling. Connectionism in Perspective, R Pfeifer. Springer, Berlin 1989
  • Traub R D, Miles R, Buzsáki G. Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J. Physiol. 1992; 451: 653–72
  • Traub R D, Wong R K S, Miles R, Michelson H. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductanses. J. Neurophysiol. 1990; 66: 635–50
  • Tråvén H, Brodin L, Lansner A, Ekeberg Ö, Wallén P, Grillner S. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive—sensory and supraspinal modulation of neurons and small networks. J. Neurophysiol. 1993; 70: 695–709
  • Vogt B A. Electrophysiological properties of cingulate neurons. Cerebral Cortex 4, A Peters, E G Jones. Plenum, New York 1985; 133–49
  • Wallén P, Ekeberg Ö, Lansner A, Brodin L, Tråvén H, Grillner S. A computer-based model for realistic simulations of neural networks. II: The segmental network generating locomotor rhythmicity in the lamprey. J. Neurophysiol. 1992; 68: 1939–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.