148
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Basal ganglia: structure and computations

Pages R77-R109 | Received 23 Jun 1997, Published online: 09 Jul 2009

References

  • Albin R L, Reiner A, Anderson K D, Dure L S, Handelin B, Balfour R, Whetsell W O, Penney J B, Young A B. Preferential loss of striato-external pallidal projection neurones in presymptomatic Huntington's disease. Ann. Neurol. 1992; 31: 425–30
  • Albin R L, Young A B, Penney J B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989; 12: 366–75
  • Aldridge J W, Anderson R J, Murphy J T. Sensory-motor processing in the caudate nucleus and globus pallidus: a single unit study in behaving primates. Can. J. Physiol. Pharmacol. 1980; 58: 1192–201
  • Aldridge J W, Gilman S. The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentral cerebral cortical ablation. Brain Res. 1991; 543: 123–38
  • Alexander G E. Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements Exp. Brain Res. 1987; 67: 623–34
  • Alexander G E, Crutcher M D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13: 266–71
  • Alexander G E, DeLong M R. Microstimulation of the primate neostriatum: I Physiological properties of striatal microexcitable zones. J. Neurophys. 1985; 53: 1401–16
  • Alexander G E, DeLong M R. Microstimulation of the primate neostriatum: II Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J. Neurophys. 1985; 53: 1417–30
  • Alexander G E, DeLong M R, Strick P L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 1986; 9: 357–81
  • Alexander M E, Wickens J R. Analysis of striatal dynamics: the existence of two modes of behaviour. J. Theoret. Biol. 1993; 163: 413–38
  • Aosaki T, Graybiel A M, Kimura M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 1994; 265: 412–5
  • Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel A M, Kimura M. Responses of tonically active neurones in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J. Neurosci. 1994; 14: 3969–84
  • Arakuni T, Kubota K. The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel. J. Comp. Neurol. 1994; 244: 492–510
  • Arbuthnott G W, MacLeod N K, Maxwell D J, Wright A K. The detailed morphology of the cortical terminals of the thalamocortical fibres from the ventromedial nucleus in the rat. The Basal Ganglia II. International Basal Ganglia Society, Victoria, British Columbia 1986; 283–91
  • Arbuthnott G W, Wickens J R. Dopamine cells are neurones too!. Trends Neurosci. 1996; 19: 279
  • Aronin N, Chase K, DiFiglia M. Glutamic acid decarboxylase and enkephalin immunoreactive axon terminals in the rat neostriatum synpase with striatonigral neurones. Brain Res. 1986; 365: 151–8
  • Barto A G. Adaptive critics and the basal ganglia. Models of Information Processing in the Basal Ganglia, J C Houk, J L Davis, D G Beiser. MIT Press, Cambridge, MA 1994; 215–32
  • Barto A G, Sutton R S, Anderson C W. Neuronlike elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 1983; SMC 15: 835–46
  • Barto A G, Sutton R S, Brouwer P S. Associative search network: a reinforcement learning associative memory. Biol. Cybern. 1981; 40: 201–11
  • Barto A G, Sutton R S, Watkins C J C H. Learning and sequential decision making. Learning and Computational Neuroscience: Foundations of Adaptive Networks, M Gabriel, J W Moore. MIT Press, Cambridge, MA 1990; 539–602
  • Bauswein E, Fromm C, Preuss A. Corticostriatal cells in comparison with pyramidal tract neurones: contrasting properties in the behaving monkey. Brain Res. 1989; 493: 198–203
  • Beninger R J. The role of dopamine in locomotor activity and learning. Brain Res. 1983; 287: 173–96
  • Bergman H, Wichmann T, DeLong M R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1991; 249: 1436–8
  • Bernardi G, Marciani M G, Morucutti C, Giacomini P. The action of picrotoxin and bicuculline on rat caudate neurones inhibited by GABA. Brain Res. 1976; 102: 379–84
  • Bhatia K P, Marsden C D. The behavioural and motor consequences of local lesions of the basal ganglia in man. Brain 1994; 117: 859–76
  • Bishop G A, Chang H T, Kitai S T. Morphological and physiological properties of neostriatal neurones: an intracellular horseradish peroxidase study in the rat. Neuroscience 1982; 7: 179–91
  • Bliss T V P, Collingridge G L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361: 31–9
  • Bolam J P, Ingham C A, Smith A D. The section Golgi-impregnation procedure: 3. Combination of Golgi-impregnation with enzyme histochemistry to characterize acetylcholinesterase-containing neurones in the rat neostriatum. Neuroscience 1984; 12: 687–709
  • Bolam J P, Powell J F, Wu J-Y, Smith A D. Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi-impregnation with immunocytochemistry. J. Comp. Neurol. 1985; 237: 1–20
  • Borisyuk R M, Wickens J R, Kotter R. Reinforcement learning in a network model of the basal ganglia. Cybernetics and Systems '94, R Trappl. World Scientific, Singapore 1994; 1681–6
  • Borrett D S, Yeap T H, Kwan H C. Neural networks and Parkinson's disease. Can. J. Neurol. Sci. 1994; 20: 107–13
  • Bouyer J J, Park D H, Joh T H, Pickel V M. Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res. 1984; 302: 267–75
  • Braitenberg V. Cell assemblies in the cerebral cortex. Theoretical Approaches to Complex Systems, R Heim, G Palm. Springer, Berlin 1978; 171–88
  • Brotchie P, Iansek R, Horne M. A neural network model of neural activity in the monkey globus pallidus. Neurosci. Lett. 1991; 131: 33–6
  • Brown L. Somatotopic organization in rat striatum: Evidence for a combinatorial map. Proc. Natl Acad. Sci. USA 1992; 89: 7403–7
  • Brown R G, Marsden C D. Cognitive function in Parkinson's disease: from description to theory. Trends Neurosci. 1990; 13: 21–9
  • Brown V J, Desimone R, Mishkin M. Responses of cells in the tail of the caudate nucleus during visual discrimination learning. J. Neurophys. 1995; 74: 1083–94
  • Buerger A A, Gross C G, Rocha-Miranda C E. Effects of ventral putamen lesions on discrimination learning by monkeys. J. Comp. Physiol. Psych. 1974; 86: 440–6
  • Calabresi P, Maj R, Mercuri N B, Bernardi G. Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci. Lett. 1992; 142: 95–9
  • Calabresi P, Maj R, Pisani A, Mercuri N B, Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 1992; 12: 4224–33
  • Calabresi P, Pisani A, Mercuri N B, Bernardi G. Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 1992; 4: 929–35
  • Calabresi P, Pisani A, Mercuri N B, Bernardi G. Post-receptor mechanisms underlying striatal long-term depression. J. Neurosci. 1994; 14: 4871–81
  • Carpenter M B. Anatomy of the corpus striatum and brainstem integrating systems. Handbook of Physiology: The Nervous System, J M Brookhart. American Physiological Society, Baltimore, MD 1981; 947–95
  • Carpenter M B, Fraser R A R, Shriver J E. The organization of pallidosubthalamic fibres in the monkey. Brain Res. 1968; 11: 522–59
  • Chang H T, Kita H, Kitai S T. The fine structure of the rat subthalamic nucleus: an electron microscopic study. J. Comp. Neurol. 1983; 221: 113–23
  • Connolly C I, Burns J B. A model for the functioning of the striatum. Biol. Cybern. 1993; 68: 535–44
  • Connolly C I, Burns J B. A new striatal model and its relationship to basal ganglia diseases. Neuroscience Res. 1993; 16: 271–4
  • Connolly C I, Burns J B. A state-space striatal model. Models of Information Processing in the Basal Ganglia, J C Houk, J L Davis, D G Beiser. MIT Press, Cambridge, MA 1995; 163–77
  • Cowan R L, Wilson C J. Spontaneous firing patterns and axonal projections of single corticostriatal neurones in the rat medial agranular cortex. J. Neurophys. 1994; 71: 17–32
  • Cowan R L, Wilson C J, Emson P C, Heizmann C W. Parvalbumin-containing GABAergic interneurones in the rat neostriatum. Neuroscience 1990; 57: 661–71
  • Coyle J T, Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature 1976; 263: 244–6
  • Crutcher M D, DeLong M R. Single cell studies of the primate putamen. I Functional organization. Exp. Brain Res. 1984; 53: 233–43
  • Crutcher M D, DeLong M R. Single cell studies of the primate putamen. II Relations of directions of movements and pattern of muscular activity. Exp. Brain Res. 1984; 53: 244–58
  • DeLong M R. Putamen: activity of single units during slow and rapid arm movements. Science 1973; 179: 1240–2
  • DeLong M R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990; 13: 281–5
  • Deniau J M, Chevalier G. Disinhibition as a basic process in the expression of striatal functions. II The striatonigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res. 1985; 334: 227–33
  • DiFiglia M, Pasik P, Pasik T. A Golgi and ultrastructural study of the monkey globus pallidus. J. Comp. Neurol. 1982; 212: 53–75
  • DiFiglia M, Pasik T, Pasik P. A Golgi study of afferent fibres in the neostriatum of monkeys. Brain Res. 1978; 152: 341–7
  • DiFiglia M, Rafols Z Z. Synaptic organization of the globus pallidus. J. Electron Microsc. Tech. 1988; 10: 247–63
  • Dimova R, Vuillet J, Nieoullon A, Kerkerian-Le Goff L. Ultrastructural features of the choline acetyltransferase-containing neurones and relationships with nigral dopaminergic and cortical afferent pathways in the rat striatum. Neuroscience 1993; 53: 1059–71
  • Dominey P F, Arbib M A. A cortico-subcortical model for generation of spatially accurate sequential saccades. Cerebral Cortex 1992; 2: 153–75
  • Donahoe J W, Palmer D C. The interpretation of complex human behavior: some reactions to ‘Parallel Distributed Processing’. J. Exp. Anal. Behav. 1988; 51: 399–416
  • Donoghue J P, Kitai S T. A collateral pathway to the neostriatum from corticofugal neurones of the rat sensory-motor cortex: an intracellular HRP study. J. Comp. Neurol. 1981; 210: 1–13
  • Early T S, Reiman E M, Raichle M E, Spitznagel E L. Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc. Natl Acad. Sci. USA 1987; 84: 561–3
  • Falls W M, Park M R, Kitai S T. An intracellular HRP study of the rat globus pallidus. II Fine structural connections of medially located large GP neurones. J. Comp. Neurol. 1983; 220: 229–45
  • Feger J, Deniau J M, Hammond-Le Guyader C, Ohye C. Connections from the basal ganglia to the thalamus. Appl. Neurophys. 1976; 39: 272–84
  • Ferrante R J, Kowall N W, Richardson E P. Proliferative and degenerative changes in striatal spiny neurones in Huntington's disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J. Neurosci. 1991; 11: 3877–87
  • Filion M, Tremblay L, Bedard P J. Abnormal influences of passive limb movement on the activity of globus pallidus neurones in Parkinsonian monkeys. Brain Res. 1988; 444: 165–76
  • Fisher R S, Shiota C, Levine M S, Hull C D, Buchwald N A. Interhemispheric organization of corticocaudate projections in the cat: a retrograde double-labelling study. Neurosci. Lett. 1984; 48: 369–73
  • Flaherty A W, Graybiel A M. Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J. Neurophys. 1991; 66: 1249–63
  • Fox C A, Andrade A N, LuQui I J, Rafols J A. The primate globus pallidus: a Golgi and electron microscopic study. J. Hirnforsch. 1974; 15: 75–93
  • Francois C, Percheron G, Yelnik J, Heyner S. A Golgi analysis of the primate globus pallidus. I Inconstant processes of large neurones, other neuronal types, and afferent axons. J. Comp. Neurol. 1984; 227: 182–99
  • Freund T F, Powell J F, Smith A D. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurones, with particular reference to dendritic spines. Neuroscience 1984; 13: 1189–215
  • Fujimoto K, Kita H. Response characteristics of subthalamic neurones to the stimulation of the sensorimotor cortex in rat. Brain Res. 1993; 609: 185–92
  • Gillies A J. The role of the subthalamic nucleus in the basal ganglia. PhD Thesis. Department of Cognitive Science, University of Edinburgh. 1995
  • Goldman-Rakic P S, Porrino L J. The primate mediodorsal nucleus and its projection to the frontal lobe. J. Comp. Neurol. 1985; 242: 535–60
  • Graveland G A, Williams R S, DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurones in Huntington's disease. Science 1985; 227: 770–3
  • Graybiel A M. Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol. 1995; 5: 733–41
  • Groves P M. A theory of the functional organisation of the neostriatum and the neostriatal control of voluntary movement. Brain Res. Rev. 1983; 5: 109–32
  • Haber S N, Nauta W J H. Ramification of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience 1983; 9: 245–60
  • Hazrati L N, Parent A. Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain Res. 1992; 569: 336–40
  • Hedreen J C. Corticostriatal cells identified by the peroxidase method. Neurosci. Lett. 1977; 4: 1–7
  • Hirata K, Yim C Y, Mogenson G J. Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra. Brain Res. 1984; 321: 1–8
  • Hoebel B G, Hernandez L, Schwartz D H, Mark G P, Hunter G A. Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behaviour: theoretical and clinical implications. Ann. NY Acad. Sci. 1989; 575: 171–91
  • Hoebel B G, Monaco A, Hernandez L, Aulisi E, Stanley B G, Lenard L. Self-injection of amphetamine directly into the brain. Psychopharmacology 1983; 81: 158–63
  • Huang Y Y, Kandel E R. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad. Sci. USA 1995; 92: 2446–50
  • Hynd G W, Hern K L, Novey E S, Eliopulos D, Marshall R, Gonzalez J J, Voeller K K. Attention deficit-hyperactivity disorder and asymmetry of the caudate nucleus. J. Child Neurol. 1993; 8: 339–47
  • Ilinsky I A, Kultas-Ilinsky K. An autoradiographic study of topographical relations between pallidal and cerebellar projections to the cat thalamus. Exp. Brain Res. 1984; 54: 95–106
  • Ilinsky I A, Kultas-Ilinsky K. Saggital cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J. Comp. Neurol. 1987; 262: 331–64
  • Ilinsky L A, Jouandet M L, Goldman-Rakic P S. Organization of the nigrothalamocortical system in the Rhesus monkey. J. Comp. Neurol. 1985; 236: 315–30
  • Izzo P N, Bolam J P. Cholinergic synaptic input to different parts of spiny striatonigral neurones in the rat. J. Comp. Neurol. 1988; 269: 219–34
  • Jaeger D, Kita H, Wilson C J. Surround inhibition among projection neurones is weak or nonexistent in the rat neostriatum. J. Neurophys. 1994; 72: 2555–8
  • Jakob A. The anatomy, clinical syndromes and physiology of the extra-pyramidal system. Arch. Neurol. Psychiatr. 1925; 13: 596–620
  • Jones E G, Coulter J D, Burton H, Porter R. Cells of origin and terminal distribution of corticostriatal fibres arising in the sensory-motor cortex of monkeys. J. Comp. Neurol. 1977; 173: 53–80
  • Jordan M I. Attractor dynamics and parallelism of a connectionist sequential machine. 8th Ann. Conf. of the Cognitive Science Society. Erlbaum, Hillsdale, NJ 1986
  • Justice J D, Nicolysen L C, Michael A C. Modelling the dopaminergic nerve terminal. J. Neurosci. Meth. 1988; 22: 239–52
  • Kanazawa I, Kimura M, Murata M. Choreic movements in the macaque monkey induced by kainic acid lesions of the neostriatum combined with L-DOPA. Brain 1990; 113: 509–35
  • Kanazawa I, Tanaka Y, Cho F. ‘Choreic’ movement induced by unilateral kainate lesion of the neostriatum and L-DOPA administration in monkey. Neurosci. Lett. 1986; 71: 241–6
  • Katayama Y, Miyazaki S, Tsubokawa T. Electrophysiological evidence favoring intracaudate axon collaterals of GABAergic caudate output neurones in the cat. Brain Res. 1981; 216: 180–6
  • Kawagoe K T, Garris P A, Wiedemann D J, Wightman R M. Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 1992; 51: 55–64
  • Kawaguchi Y. Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. J. Neurophys. 1992; 67: 1669–82
  • Kawaguchi Y, Wilson C J, Emson P C. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 1990; 10: 3421–38
  • Kawaguci Y. Physiological, morphological, and histochemical characterization of three classes of interneurones in rat neostriatum. J. Neurosci. 1993; 13: 4908–23
  • Kehoe E J. A layered network model of associative learning:Learning to learn and configuration. Psychol. Rev. 1988; 95: 411–33
  • Kimura M. The role of primate putamen neurones in the association of sensory stimuli with movement. Neuroscience Res. 1986; 3: 436–43
  • Kimura M. Behaviorally contingent property of movement-related activity of the primate putamen. J. Neurophys. 1990; 63: 1277–96
  • Kimura M, Kato M, Shimazaki H. Physiological properties of projection neurones in the monkey striatum to the globus pallidus. Exp. Brain Res. 1990; 82: 672–6
  • Kimura M, Rajowski J, Evarts E. Tonically discharging putamen neurones exhibit set dependent responses. Proc. Natl Acad. Sci. USA 1984; 81: 4998–5001
  • Kita H. GABAergic circuits of the striatum. Prog. Brain Res. 1993; 90: 51–72
  • Kita H, Chang H, Kitai S T. The morphology of intracellularly labeled rat subthalamic neurones: a light microscopic analysis. J. Comp. Neurol. 1983; 215: 245–57
  • Kita H, Chang H, Kitai S T. Pallidal inputs to the subthalamus: intracellular analysis. Brain Res. 1983; 264: 255–65
  • Kita H, Kitai S T. Efferent projections of the subthalamic nucleus in the rat: light and electron microscope analysis with the PHA-L method. J. Comp. Neurol. 1987; 260: 435–52
  • Kita H, Kitai S T. Glutamate decarboxylase immunoreactive neurones in cat neostriatum: their morphological types and populations. Brain Res. 1988; 447: 346–52
  • Kita H, Kitai S T. The morphology of globus pallidus projection neurones in the rat: an intracellular staining study. Brain Res. 1994; 636: 308–19
  • Kitai S T, Deniau J. Cortical inputs to the subthalamus: intracellular analysis. Brain Res. 1981; 214: 411–5
  • Kitai S T, Kita H, Jayaraman A. Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. The Basal Ganglia II, M B Carpenter. Plenum, New York 1986; 357–73
  • Kitai S T, Mountcastle V B, Brooks V B, Geiger S R. Electrophysiology of the corpus striatum and brain stem integrating systems. Handbook of Physiology: The Nervous System, J M Brookhart. American Psychological Society, Bethesda, MD 1981; 997–1013
  • Klopf A H. The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence. Hemisphere, Washington, DC 1982
  • Kosar E, Walters R S, Tsukahara N, Asanuma H. Anatomical and physiological properties of the projection from the sensory cortex to the motor cortex in normal cats; the differences between cortico-cortical and thalamo-cortical projections. Brain Res. 1985; 345: 68–78
  • Kötter R, Wickens J R. Interactions of glutamate and dopamine in a computational model of the striatum. J. Comput. Neurosci. 1995; 2: 195–214
  • Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein F, Tohyama M. Neostriatal cholinergic neurones receive direct synaptic inputs from dopaminergic axons. Brain Res. 1987; 413: 179–84
  • Künzle H. Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca Fascicularis. Brain Res. 1975; 88: 195–209
  • Künzle H. Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp. Brain Res. 1977; 30: 481–92
  • Künzle H. An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions areas 6 and 9 in Macaca Fascicularis. Brain Behav. Evol. 1978; 15: 185–234
  • Kuo J-S, Carpenter M B. Organization of pallidothalamic projections in the Rhesus monkey. J. Comp. Neurol. 1973; 151: 201–36
  • Kurumiya S, Nakajima S. Dopamine D-1 receptors in the nucleus accumbens: involvement in the reinforcing effect of tegmental stimulation. Brain Res. 1988; 448: 1–6
  • Lange H, Thorner G, Hopf A. Morphometric-statistical structure analysis of human striatum, pallidum and nucleus subthalamicus. III. Nucleus subthalamicus. J. Hirnforsch. 1976; 17: 31–41
  • LaPlane D, Baulac M, Widlocher D, Dubois B. Pure psychic akinesia with bilateral lesions of basal ganglia. J. Neurol. Neurosurg. Psychiatr. 1984; 47: 377–85
  • Lapper S R, Bolam J P. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurones in the dorsal striatum of the rat. Neuroscience 1992; 51: 533–45
  • Laursen A M. Corpus striatum. Acta Physiol. Scand. 1963; 59: 1–103
  • Lees A J, Smith E. Cognitive deficits in the early stages of Parkinson's disease. Brain 1983; 106: 257–70
  • Levine M S, Hull C D, Buchwald N A, Villablanca J R. Effects of caudate nuclei or frontal cortical ablations in kittens: motor activity and visual discrimination performance in neonatal and juvenile kittens. Exp. Neurol. 1978; 62: 555–69
  • Lichter D G, Corbett A J, Fitzgibbon G M, Davidson O R, Hope J K A, Goddard G V, Sharples K J, Pollock M. Cognitive and motor function in Parkinson's disease. Clinical, performance and computer tomographic correlations. Arch. Neurol. 1988; 45: 854–60
  • Lighthall J W, Kitai S T. A short duration GABAergic inhibition in identified neostriatal medium spiny neurones: in vitro slice study. Brain Res. Bull. 1983; 11: 103–10
  • Lighthall J W, Park M R, Kitai S T. Inhibition in slices of rat neostriatum. Brain Res. 1981; 212: 182–7
  • Liles S L. Topographic organization of neurones related to arm movement in the putamen. Adv. Neurol. 1979; 23: 155–62
  • Liles S L. Activity of neurones in putamen during active and passive movements of wrist. J. Neurophys. 1985; 53: 217–36
  • Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurones during learning of behavioral reactions. J. Neurophys. 1992; 67: 145–63
  • Lovinger D M, Tyler E C, Marritt A. Short- and long-term depression in the rat neostriatum. J. Neurophys. 1993; 70: 1937–49
  • MacLeod N K, James T A, Kilpatric I C, Starr M S. Evidence for GABA-ergic nigrothalamic pathway in the rat. Electrophysiological studies. Exp. Brain Res. 1980; 40: 55–61
  • Malach R, Graybiel A M. Mosaic architecture of the somatic sensory-recipient sector of the cat's striatum. J. Neurosci. 1988; 6: 3436–58
  • Mark G P, Blander D S, Hoebel B G. A conditioned stimulus decreases extracellular dopamine in the nucleus accumbens after the development of a learned taste aversion. Brain Res. 1991; 551: 308–10
  • Marr D. Vision. Freeman, San Francisco 1982
  • Marsden C D. The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology 1982; 32: 514–39
  • Marsden C D, Obeso J A. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 1994; 117: 877–97
  • Martiel J L, Mouchet P, Boissier M D. Modeling the integrative properties of dendrites: application to the striatal spiny neuron. Synapse 1994; 16: 269–79
  • McGeer P L, McGeer E G. Neurotransmitters and their receptors in the basal ganglia. Adv. Neurol. 1993; 60: 93–101
  • McGeer P L, McGeer E G, Scherer U, Singh K. A glutamatergic corticostriatal path?. Brain Res. 1977; 128: 369–73
  • McGeorge A J, Faull R L. The organisation of the projections from the cerebral cortex to the striatum in the rat. Neuroscience 1989; 29: 503–37
  • Meredith G E, Wouterlood F G. Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurones in nucleus accumbens of the rat: a light and electron microscopic study. J. Comp. Neurol. 1990; 296: 204–21
  • Miller R. Meaning and Purpose in the Intact Brain. Oxford University Press, Oxford 1981
  • Miller R. Cortico-striatal and cortico-limbic circuits: a two tiered model of learning and memory function. Information Processing by the Brain: Views and Hypotheses from a Cognitive-Physiological Perspective, H Markowitsch. Huber, Bern 1988; 179–98
  • Miller R, Wickens J R. Reward as fulfillment of motor intentions: a unifying concept for the function of the mammalian striatum. Int. J. Neurosci. 1989; 46: 23–4
  • Miller R, Wickens J R. Corticostriatal cell assemblies in selective attention and in representation of predictable and controllable events. Concepts Neurosci. 1991; 2: 65–95
  • Miller R, Wickens J R, Beninger R. Dopamine D-1 and D-2 receptors in relation to reward and performance: a case for the D-1 receptor as a primary site of therepeutic action of neuroleptic drugs. Prog. Neurobiol. 1990; 34: 143–83
  • Millhouse O E. Pallidal neurones in the rat. J. Comp. Neurol. 1986; 254: 209–27
  • Minsky M L. Steps toward artificial intelligence. Proc. Inst. Radio Eng. 1961; 49: 8–30
  • Mirenowicz J, Schultz W. Importance of unpredictability for reward responses in primate dopamine neurones. J. Neurophys. 1994; 72: 1024–7
  • Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurones by appetitive rather than aversive stimuli. Nature 1996; 379: 449–51
  • Mishkin M, Malamut B, Bachevalier J. Memories and habits: two neural systems. Neurobiology of Learning and Memory, G Lynch, J L McGaugh, N M Weinberger. Guilford, New York 1984; 65–77
  • Mishkin M, Petri H L. Memories and habits: some implications for the analysis of learning and retention. The Neuropsychology of Memory, L R Squire, N Butters. Guilford, New York 1984
  • Mitchell I J, Brotchie J M, Brown G D A. Modeling the functional organization of the basal ganglia. Movement Disorders 1991; 6: 189–204
  • Mori A, Takahashi T, Miyashita Y, Kasai H. Two distinct glutamatergic synaptic inputs to striatal medium spiny neurones of neonatal rats and paired-pulse depression. J. Physiol. 1994; 476: 217–28
  • Myers R H, Vonsattel J P, Stevens T J, Cupples L A, Richardson M P, Martin J B, Bird E D. Clinical and neuropathological assessment of severity in Huntington's disease. Neurology 1988; 38: 341–7
  • Nakanishi H, Kita H, Kitai S T. Electrical membrane properties of rat subthalamic neurones in an in vitro slice preparation. Brain Res. 1987; 437: 35–44
  • Nambu A. Projection on the motor cortex of thalamic neurones with pallidal input in the monkey. Exp. Brain Res. 1988; 71: 658–62
  • Nicole S. Effects of IAHP on pattern recall and the synchronization of firing. Network: Comput. Neural Syst. 1992; 3: 369–78
  • Nishino H, Ono T, Sasaki K, Fukuda M, Muramoto K. Caudate unit activity during operant feeding behavior in monkeys and modulation by cooling prefrontal cortex. Behav. Brain Res. 1984; 11: 21–3
  • Oertel W H, Mufnini E. Immunocytochemical studies of GABAergic neurones in rat basal ganglia and their relations to other neuronal systems. Neurosci. Lett. 1984; 47: 233–8
  • Oka H. Organization of the corticocaudate projections. A horseradish peroxidase study in the cat. Exp. Brain Res. 1980; 40: 203–8
  • Olmstead C E, Villablanca J R. Effects of caudate nuclei or frontal cortical ablations in kittens: bar pressing performance. Exp. Neurol. 1979; 63: 244–56
  • Olmstead C E, Villablanca J R, Marcus R J, Avery D L. Effects of caudate nuclei of frontal cortex ablations in cats: IV bar pressing, maze learning, and performance. Exp. Neurol. 1976; 53: 670–93
  • Oorschot D E. Total number of neurones in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J. Comp. Neurol. 1996; 366: 580–99
  • Oorschot D E. Total number of large interneurones within the rat neostriatum: a stereological study using the optical disector and Cavalieri methods. Int. J. Neurosci. 1997; 89: 90
  • Park M R, Falls W M, Kitai S T. An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J. Comp. Neurol. 1982; 211: 284–94
  • Park M R, Lighthall J W, Kitai S T. Recurrent inhibition in the rat neostriatum. Brain Res. 1980; 194: 359–69
  • Pasik P, Pasik T, Holstein G, Hamori J. GABAergic elements in the neuronal circuits of the monkey neostriatum: a light and electron microscopic immunocytochemical study. J. Comp. Neurol. 1988; 270: 157–70
  • Pasik T, Pasik P. The internal organization of the pallidum in mammals. J. Neural. Transm. 1983; 19: 13–35
  • Pennartz C M A, Ameerun R F, Groenewegen H J, Lopes da Silva F H. Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur. J. Neurosci. 1993; 5: 107–17
  • Penny G R, Wilson C J, Kitai S T. Relationship of the axonal and dendritic geometry of spiny projection neurones to the compartmental organization of the neostriatum. J. Comp. Neurol. 1988; 269: 275–89
  • Percheron G, Filion M. Parallel processing in the basal ganglia: up to a point. Trends Neurosci. 1991; 14: 55–6
  • Percheron G, Francois C, Yelnick J. Spatial organization and information processing in the core of the basal ganglia. The Basal Ganglia II. International Basal Ganglia Society, Victoria, British Columbia 1987; 205–26
  • Percheron G, Yelnick J, Francois C. The primate striato-pallidal-nigral system: an integrative system for cortical information. The Basal Ganglia: Structure and Function, J S McKenzie, R E Kemm, L N Wilcock. Plenum, New York 1984; 87–105
  • Plenz D, Aertsen A. Neural dynamics in cortex-striatum co-cultures II: Spatiotemporal characteristics of neuronal activity. Neuroscience 1996; 70: 893–924
  • Plenz D, Wickens J, Kitai S T. Basal ganglia control of sequential activity in the cerebral cortex: a model. Computational Neuroscience, J M Bower. Academic, New York 1996; 397–402
  • Preston R J, Bishop G A, Kitai S T. Medium spiny neuron projection from the rat neostriatum: an intracellular horseradish peroxidase study. Brain Res. 1980; 183: 253–63
  • Preuss T M, Goldman-Rakic P S. Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex. J. Comp. Neurol. 1987; 257: 269–81
  • Rebec G V, Curtis S D. Reciprocal zones of excitation and inhibiton in the neostriatum. Synapse 1988; 2: 633–5
  • Rolls E T, Thorpe S J, Boytim M, Szabo I, Perrett D I. Responses of striatal neurones in the behaving monkey. 3 Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 1984; 12: 1201–12
  • Rolls E T, Thorpe S J, Maddison J. Responses of striatal neurones in the behaving monkey. 1 Head of the caudate nucleus. Behav. Brain Res. 1983; 7: 179–210
  • Rolls E T, Williams G V. Sensory and movement-related activity in different regions of the primate striatum. Basal Ganglia and Behavior, J S Schneider, T I Lidsky. Huber, Stuttgart 1986; 37–60
  • Royce G J. Cortical neurones with collateral projections to both caudate nucleus and the centromedian-parafascicular thalamic complex: a fluorescent retrograde double labelling study in the cat. Exp. Brain Res. 1983; 50: 157–65
  • Rumelhart D E, Hinton G E, Williams R J. Learning representations by backpropagating errors. Nature 1986; 323: 533–5
  • Saint-Cyr J A, Taylor A E, Nicholson K. Behavior and the basal ganglia. Adv. Neurol. 1995; 65: 1–28
  • Saint-Cyr J A, Ungerleider L G, Desimone R. Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J. Comp. Neurol. 1990; 298: 129–56
  • Schell G R, Strick P L. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci. 1984; 4: 539–60
  • Schneider J S. Responses of striatal neurones to peripheral sensory stimulation in symptomatic MPTP-exposed cats. Brain Res. 1991; 544: 297–302
  • Schneider J S, Levine M S, Hull C D, Buchwald N A. Effects of amphetamine on intracellular responses of caudate neurones in the cat. J. Neurosci. 1984; 4: 930–8
  • Schroder K F, Hopf A, Lange H, Thorner G. Morphometrisch-statistische Strukturanalysen des Striatum, Pallidum und Nucleus subthalamacus beim Menschen. I Striatum. J. Hirnforsch. 1975; 16: 333–50
  • Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurones to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 1993; 13: 900–13
  • Schultz W, Romo R. Neuronal activity in the monkey striatum during the initiation of movements. Exp. Brain Res. 1988; 71: 431–6
  • Schultz W, Ungerstedt U. Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Exp. Brain Res. 1978; 33: 399–406
  • Schwab M, Agid Y, Glowinski L, Thoenen H. Retrograde axonal transport of I-tetanus toxin as a tool for tracing fibre connections in the central nervous system: connections of the rostral part of the rat neostriatum. Brain Res. 1977; 126: 211–24
  • Selemon L D, Goldman-Rakic P S. Parallel processing in the basal ganglia: up to a point. Trends Neurosci. 1991; 14: 58–9
  • Servan-Schreiber D, Blackburn J R. Neuroleptic effects on acquisition and performance of learned behaviors: a reinterpretation. Life Sci. 1995; 56: 2239–45
  • Servan-Schreiber D, Printz H, Cohen J D. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 1990; 249: 892–5
  • Shimamoto T, Verzeano M. Relations between caudate and diffusely projecting thalamic nuclei. J. Neurophys. 1953; 17: 278–88
  • Somogyi J P, Bolam J P, Smith A D. Monosynaptic cortical input and local axon collaterals of identified striatonigral neurones. A light and electron microscope study using the Golgi-peroxidase transport degeneration procedure. J. Comp. Neurol. 1981; 195: 567–84
  • Stellar J R, Stellar E. The Neurobiology of Motivation and Reward. Springer, Berlin 1985
  • Strick P. How do the basal ganglia and cerebellum gain access to the cortical motorareas?. Behav. Brain Res. 1985; 18: 107–24
  • Surmeier D J, Bargas J, Hemmings H C, Jr, Nairn A C, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurones. Neuron 1995; 14: 385–97
  • Surmeier D J, Bargas J, Kitai S T. Voltage-clamp analysis of a transient potassium current in rat neostriatal neurones. Brain Res. 1988; 473: 187–92
  • Surmeier D J, Kitai S T. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurones. Prog. Brain Res. 1993; 99: 309–324
  • Surmeier D J, Stefani A, Foehring R C, Kitai S T. Developmental regulation of a slowly-inactivating potassium conductance in rat neostriatal neurones. Neurosci. Lett. 1991; 122: 41–6
  • Sutton R S, Barto A G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 1981; 88: 135–71
  • Takagi H, Somogyi P, Smith A D. Aspiny neurones and their local axons in the neostriatum of the rat: a correlated light and electron microscopic study of Golgi-imprgnated material. J. Neurocytol. 1984; 13: 239–65
  • Talland G A. Cognitive functions in Parkinson's disease. J. Nerv. Ment. Dis. 1962; 135: 196–205
  • Tanaka D. Differential laminar distribution of corticostriatal neurones in the prefrontal and pericruciate gyri of the dog. J. Neurosci. 1987; 7: 4095–106
  • Taylor A E, Saint-Cyr J A. The neuropsychology of Parkinson's disease. Brain and Cognition 1995; 28: 281–96
  • Thompson R L, Mettler F A. Permanent learning deficit associated with lesions in the caudate nuclei. Am. J. Ment. Def. 1963; 67: 526–35
  • Thorner G, Lange H, Hopf A. Morphometrisch-statistische Strukturanalysen des Striatum, Pallidum und Nucleus Subthalamics beim Menschen. II Pallidum. J. Hirnforsch. 1975; 16: 401–13
  • Tremblay L, Filion M, Bedard B J. Responses of pallidal neurones to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Res. 1989; 498: 17–33
  • Usunoff K G, Hassler R, Romansky K V, Wagner A, Christ J F. Electron microscopy of the subthalamic nucleus in the baboon. II. Experimental demonstration of pallido-subthalamic synapses. J. Hirnforsch. 1982; 23: 613–25
  • van der Kooy D, Hattori T. Single subthalamic nucleus neurones project to both the globus pallidus and substantia nigra in rat. J. Comp. Neurol. 1980; 192: 751–68
  • Vonsattel J P, Myers R H, Stevens T J, Ferrante R J, Bird E D, Richardson E P. Neuropathological classification of Huntington's disease. J. Neuropath. Exp. Neurol. 1985; 44: 559–77
  • Walker R H, Graybiel A M. Dendritic arbors of spiny neurones in the primate striatum are directionally polarized. J. Comp. Neurol. 1993; 337: 629–239
  • Walsh J P. Depression of excitatory synaptic input in rat striatal neurones. Brain Res. 1993; 608: 123–8
  • Walshe F M R. On disorders of movement resulting from loss of postural tone, with special reference to cerebellar ataxy. Brain 1921; 44: 539–56
  • Warenycia M W, McKenzie G M, Murphy M, Szerb J C. The effects of cortical ablation on multiple unit activity in the striatum following dexamphetamine. Neuropharmacology 1987; 26: 1107–14
  • West M O, Micheal A J, Knowles S F, Chapin J K, Woodward D J. Striatal unit activity and the linkage between sensory and motor events. Basal Ganglia and Behaviour: Sensory Aspects of Motor Functioning, J S Schneider, T I Lidsky. Huber, Stuttgart 1986; 27–35
  • White N M. A functional hypothesis conerning the striatal matrix and patches: mediation of S-R memory and reward. Life Sci. 1989; 45: 1943–57
  • Wichmann T, Bergman H, DeLong M R. The primate subthalamic nucleus. I. Functional properties in intact animals. J. Neurophys. 1994; 72: 494–506
  • Wickens J R. Striatal dopamine in motor activation and reward-mediated learning. Steps towards a unifying model. J. Neural. Transm. 1990; 80: 9–31
  • Wickens J R. The contribution of the striatum to cortical function. Information Processing in the Cortex, A Aertsen, V Braitenberg. Springer, Berlin 1992; 271–84
  • Wickens J R. Corticostriatal interactions in neuromotor programming. Hum. Mov. Sci. 1993; 12: 17–35
  • Wickens J R. A Theory of the Striatum. Pergamon, Oxford 1993
  • Wickens J R, Alexander M E, Miller R. Two dynamic modes of striatal function under dopaminergic-cholinergic control: simulation and analysis of a model. Synapse 1991; 8: 1–12
  • Wickens J R, Arbuthnott G W. The corticostriatal system on computer simulation: an intermediate mechanism for sequencing of actions. Prog. Brain Res. 1993; 99: 325–39
  • Wickens J R, Begg A J, Arbuthnott G W. Dopamine reverses the depression of rat cortico-striatal synapses which normally follows high frequency stimulation of cortex in vitro. Neuroscience 1996; 70: 1–5
  • Wickens J R, Kötter R. Cellular models of reinforcement. Models of Information Processing in the Basal Ganglia, J C Houk, J L Davis, D G Beiser. MIT Press, Cambridge, MA 1995; 187–214
  • Wickens J R, Kotter R, Alexander M E. Effects of local connectivity on striatal function: simulation and analysis of a model. Synapse 1995; 20: 281–98
  • Williams R J, Peng J (1989) Reinforcement learning algorithms as function optimizers. Proc. Int. Joint Conf. on Neural Networks, Washington, DC, June, 1989. IEEE, Piscataway, NJ, II: 89–95
  • Wilson C J. Passive cable properties of dendritic spines and spiny neurones. J. Neurosci. 1984; 4: 281–97
  • Wilson C J. Postsynaptic potentials evoked in spiny neostriatal projection neurones by stimulation of ipsilateral and contralateral neocortex. Brain Res. 1986; 367: 201–13
  • Wilson C J. Morphology and synaptic connections of crossed corticostriatal neurones in the rat. J. Comp. Neurol. 1987; 263: 567–80
  • Wilson C J. The basal ganglia. The Synaptic Organization of the Brain, G M Shepherd. Oxford University Press, Oxford 1990; 279–316
  • Wilson C J. Dendritic morphology, inward rectification, and the functional properties of neostriatal neurones. Single Neuron Computation, T McKenna, J Davis, S F Zornetzer. Academic, New York 1992; 141–71
  • Wilson C J. The generation of natural firing patterns in neostriatal neurones. Prog. Brain Res. 1993; 99: 277–97
  • Wilson C J. The contribution of cortical neurones to the firing pattern of striatal spiny neurones. Models of Information Processing in the Basal Ganglia, J C Houk, J L Davis, D G Beiser. MIT Press, Cambridge, MA 1995; 187–214
  • Wilson C J. Dynamic modification of dendritic cable properties and synaptic transmission by voltage-gated potassium channels. J. Comput. Neurosci. 1995; 2: 91–115
  • Wilson C J, Chang H T, Kitai S T. Disfacilitation and long-lasting inhibition of neostriatal neurones in the rat. Exp. Brain Res. 1983; 51: 227–35
  • Wilson C J, Chang H T, Kitai S T. Firing patterns and synaptic potentials of identified giant aspiny interneurones in the rat neostriatum. J. Neurosci. 1990; 10: 508–19
  • Wilson C J, Groves P M. Fine structure and synaptic connection of the common spiny neuron of the rat neostriatum: a study emplying intracellular injection of horseradish peroxidase. J. Comp. Neurol. 1980; 194: 599–615
  • Wilson C J, Groves P M. Spontaneous firing patterns of identified spiny neurones in the rat neostriatum. Brain Res. 1981; 220: 67–80
  • Wilson C J, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurones. J. Neurosci. 1996; 16: 2397–410
  • Wilson J S, Hull C D, Buchwald N A. Intracellular studies of the convergence of sensory input on caudate neurones of cat. Brain Res. 1983; 270: 197–208
  • Wilson S A K. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 1912; 34: 295–509
  • Wilson S A K. An experimental research into the anatomy and physiology of the corpus striatum. Brain 1914; 36: 427–92
  • Wilson S A K. Disorders of motility and muscle tone, with special reference to the striatum. Lancet 1925; 2: 1
  • Wise S P, Jones E G. Cells of origin and descending projections of the rat somatic sensory cortex. J. Comp. Neurol. 1977; 175: 129–58
  • Wishaw I Q, Mittleman G, Bunch S T, Dunnett S B. Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rat. Behav. Brain Res. 1987; 24: 125–38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.