1,243
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Tangible nanocomposites with diverse properties for heart valve application

, , , , , , , & show all
Article: 033504 | Received 19 Jan 2015, Accepted 01 Apr 2015, Published online: 20 May 2015

References

  • 2014 American Heart Association statistical report tracks global figures for first time (http://blog.heart.org/american-heart-association-statistical-report-tracks-global-figures-first-time/)
  • IungB 2003 A prospective survey of patients with valvular heart disease in Europe: the euro heart survey on valvular heart disease Eur. Heart J. 24 1231 1243 1231–43 10.1016/S0195-668X(03)00201-X
  • RobertsW CKoJ M 2005 Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation Circulation 111 920 925 920–5 10.1161/01.CIR.0000155623.48408.C5
  • MohammadiHMequanintK 2011 Prosthetic aortic heart valves: modeling and design Med. Eng. Phys. 33 131 147 131–47 10.1016/j.medengphy.2010.09.017
  • GhanbariHViatgeHKidaneA GBurriesciGTavakoliMSeifalianA M 2009 Polymeric heart valves: new materials, emerging hopes Trends Biotechnol. 27 359 367 359–67 10.1016/j.tibtech.2009.03.002
  • GallocherS LAguirreA FKasyanovVPinchukLSchoephoersterR T 2006 A novel polymer for potential use in a trileaflet heart valve J. Biomed. Mater. Res. Part B Appl. Biomater. 79 325 334 325–34 10.1002/jbm.b.30546
  • WangQMcGoronA JBiancoRKatoYPinchukLSchoephoersterR T 2010 In vivo assessment of a novel polymer (SIBS) trileaflet heart valve J. Heart Valve Disease 19 499 505 499–505
  • CacciolaGPetersG WBaaijensF P 2000 A synthetic fiber-reinforced stentless heart valve J. Biomech. 33 653 658 653–8 10.1016/S0021-9290(00)00003-8
  • JiangHCampbellGBoughnerDWanW KQuantzM 2004 Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis Med. Eng. Phys. 26 269 277 269–77 10.1016/j.medengphy.2003.10.007
  • WheatleyD JRacoLBernaccaG MSimIBelcherP RBoydJ S 2000 Polyurethane: material for the next generation of heart valve prostheses? European J. Cardio-Thoracic Surgery: Official J. Eur. Assoc. Cardio-Thoracic Surgery 17 440 448 440–8 10.1016/S1010-7940(00)00381-X
  • KannanR YSalacinskiH JButlerP ESeifalianA M 2005 Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications Acc. Chem. Res. 38 879 884 879–84 10.1021/ar050055b
  • HuangHYuanQYangX 2005 Morphology study of gold-chitosan nanocomposites J. Colloid Interface Sci. 282 26 31 26–31 10.1016/j.jcis.2004.08.063
  • MengGCaoAChengJ YAjayanP M 2004 Carbon nanotubes grafted on silicon oxide nanowires J. Nanosci. Nanotechnol. 4 712 715 712–5 10.1166/jnn.2004.100
  • SuhrJKoratkarNKeblinskiPAjayanP 2005 Viscoelasticity in carbon nanotube composites Nat. Mater. 4 134 137 134–7 10.1038/nmat1293
  • LiuY LHsuC YSuY HLaiJ Y 2005 Chitosan–silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol–water solutions Biomacromolecules 6 368 373 368–73 10.1021/bm049531w
  • YangH GZengH C 2005 Synthetic architectures of TiO2/H2Ti5O11.H2O, ZnO/H2Ti5O11.H2O, ZnO/TiO2/H2Ti5O11.H2O, and ZnO/TiO2 nanocomposites J. Am. Chem. Soc. 127 270 278 270–8 10.1021/ja045253x
  • MackayT GWheatleyD JBernaccaG MFisherA CHindleC S 1996 New polyurethane heart valve prosthesis: design, manufacture and evaluation Biomaterials 17 1857 1863 1857–63 10.1016/0142-9612(95)00242-1
  • EdmundsL H Jr 1997 Directions for improvement of substitute heart valves: national heart, lung, and blood institute's working group report on heart valves J. Biomed. Mater. Res. 38 263 266 263–6 10.1002/(SICI)1097-4636(199723)38:3<263::AID-JBM11>3.0.CO;2-C
  • HasanA 2014 Biomechanical properties of native and tissue engineered heart valve constructs J. Biomech. 47 1949 1963 1949–63 10.1016/j.jbiomech.2013.09.023
  • BalguidA 2007 The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets–relevance for tissue engineering Tissue Engineering 13 1501 1511 1501–11 10.1089/ten.2006.0279
  • MavrilasDMissirlisY 1991 An approach to the optimization of preparation of bioprosthetic heart valves J. Biomech. 24 331 339 331–9 10.1016/0021-9290(91)90351-M
  • NayyerLBirchallMSeifalianA MJellG 2014 Design and development of nanocomposite scaffolds for auricular reconstruction Nanomed.: Nanotechnol., Biol. Med. 10 235 246 235–46 10.1016/j.nano.2013.06.006
  • JungebluthP 2011 Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study The Lancet 378 1997 2004 1997–2004 10.1016/S0140-6736(11)61715-7
  • ChaloupkaKMotwaniMSeifalianA M 2011 Development of a new lacrimal drainage conduit using POSS nanocomposite Biotechnol. Appl. Biochem. 58 363 370 363–70 10.1002/bab.53
  • FarhatniaYTanAMotiwalaACousinsB GSeifalianA M 2013 Evolution of covered stents in the contemporary era: clinical application, materials and manufacturing strategies using nanotechnology Biotechnol. Adv. 31 524 542 524–42 10.1016/j.biotechadv.2012.12.010
  • IguchiMYamanakaSBudhionoA 2000 Bacterial cellulose—a masterpiece of nature’s arts J. Mater. Sci. 35 261 270 261–70 10.1023/A:1004775229149
  • BackdahlH 2006 Mechanical properties of bacterial cellulose and interactions with smooth muscle cells Biomaterials 27 2141 2149 2141–9 10.1016/j.biomaterials.2005.10.026
  • KlemmDSchumannDUdhardtUMarschS 2001 Bacterial synthesized cellulose—artificial blood vessels for microsurgery Prog. Polym. Sci. 26 1561 1603 1561–603 10.1016/S0079-6700(01)00021-1
  • LinNDufresneA 2014 Nanocellulose in biomedicine: current status and future prospect Eur. Polym. J. 59 302 325 302–25 10.1016/j.eurpolymj.2014.07.025
  • WanY Z 2006 Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites Compos. Sci. Technol. 66 1825 1832 1825–32 10.1016/j.compscitech.2005.11.027
  • KalbacovaMKalbacMDunschLKatauraHHempelU 2006 The study of the interaction of human mesenchymal stem cells and monocytes/macrophages with single-walled carbon nanotube films Phys. Status Solidi (B) 243 3514 3518 3514–8 10.1002/pssb.200669167
  • LiCAdamcikJMezzengaR 2012 Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties Nat. Nanotechnol. 7 421 427 421–7 10.1038/nnano.2012.62
  • ComptonO C 2012 Additive-free hydrogelation of graphene oxide by ultrasonication Carbon 50 3399 3406 3399–406 10.1016/j.carbon.2012.01.061
  • DreyerD RParkSBielawskiC WRuoffR S 2010 The chemistry of graphene oxide Chem. Soc. Rev. 39 228 240 228–40 10.1039/B917103G
  • LeeW H 2012 Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic ACS Nano 6 1284 1290 1284–90 10.1021/nn203998j
  • MyungSParkJLeeHKimK SHongS 2010 Ambipolar memory devices based on reduced graphene oxide and nanoparticles Adv. Mater. 22 2045 2049 2045–9 10.1002/adma.200903267
  • LeeW H 2012 Selective-area fluorination of graphene with fluoropolymer and laser irradiation Nano Lett. 12 2374 2378 2374–8 10.1021/nl300346j
  • LinY 2004 Advances toward bioapplications of carbon nanotubes J. Mater. Chem. 14 527 541 527–41 10.1039/b314481j
  • YangNChenXRenTZhangPYangD 2015 Carbon nanotube based biosensors Sensors and Actuators B: Chemical A 207 690 715 690–715 10.1016/j.snb.2014.10.040
  • BaslakCDemirel KarsMKaramanMKusMCengelogluYErsozM 2015 Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications J. Lumin. 160 9 15 9–15 10.1016/j.jlumin.2014.11.030
  • SahanaHKhajuriaD KRazdanRMahapatraDBhatMSureshS 2013 Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis J. Biomed. Nanotechnol. 9 193 201 193–201 10.1166/jbn.2013.1482
  • De SantisR 2011 A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering J. Appl. Polym. Sci. 122 3599 3605 3599–605 10.1002/app.34771
  • BezuidenhoutDWilliamsD FZillaP 2015 Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices Biomaterials 36 6 25 6–25 10.1016/j.biomaterials.2014.09.013
  • WanW KHutterJ LMiltonLGuhadosG 2006 Bacterial cellulose and its nanocomposites for biomedical applications cellulose nanocomposites ACS Symposium Series 938 221 241 221–41
  • MillonL EWanW K 2006 The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications J. Biomed. Mater. Res. Part B Appl. Biomater. 79 245 253 245–53 10.1002/jbm.b.30535
  • KidaneA GBurriesciGEdirisingheMGhanbariHBonhoefferPSeifalianA M 2009 A novel nanocomposite polymer for development of synthetic heart valve leaflets Acta Biomaterialia 5 2409 2417 2409–17 10.1016/j.actbio.2009.02.025
  • XuHKuoS-WLeeJ-SChangF-C 2002 Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes Macromolecules 35 8788 8793 8788–93 10.1021/ma0202843
  • GhanbariHKidaneA GBurriesciGRameshBDarbyshireASeifalianA M 2010 The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve Acta Biomaterialia 6 4249 4260 4249–60 10.1016/j.actbio.2010.06.015
  • PetrovićZ SJavniIWaddonABánhegyiG 2000 Structure and properties of polyurethane–silica nanocomposites J. Appl. Polym. Sci. 76 133 151 133–51 10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K
  • KashyapK TPatilR G 2008 On Young’s modulus of multi-walled carbon nanotubes Bull. Mater. Sci. 31 185 187 185–7 10.1007/s12034-008-0032-2
  • DengLEichhornS JKaoC-CYoungR J 2011 The Effective Young’s modulus of carbon nanotubes in composites ACS Appl. Mater. Interfaces 3 433 440 433–40 10.1021/am1010145
  • SitharamanB 2008 In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering Bone 43 362 370 362–70 10.1016/j.bone.2008.04.013
  • GuoWLiuCSunXYangZKiaH GPengH 2012 Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity J. Mater. Chem. 22 903 908 903–8 10.1039/C1JM13769G
  • Zomer VolpatoFFernandes RamosS LMottaAMigliaresiC 2011 Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications J. Bioact. Compat. Polym. 26 35 47 35–47 10.1177/0883911510391449
  • AmrI T 2011 Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites Composites Part B: Engineering 42 1554 1561 1554–61 10.1016/j.compositesb.2011.04.013
  • JungY C 2010 Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film Macromolecules 43 6106 6112 6106–12 10.1021/ma101039y
  • TijingL D 2013 Characterization and mechanical performance comparison of multi-walled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting Composites Part B: Engineering 44 613 619 613–9 10.1016/j.compositesb.2012.02.015
  • OgiharaN 2012 Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes Nanomedicine 7 981 993 981–93 10.2217/nnm.12.1
  • GarmendiaNSantacruzIMorenoRObietaI 2010 Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing J. Mater Sci.: Mater Med. 21 1445 1451 1445–51 10.1007/s10856-010-4023-7
  • ZhangL 2011 High strength graphene oxide/polyvinyl alcohol composite hydrogels J. Mater. Chem. 21 10399 10406 10399–406 10.1039/c0jm04043f
  • JinSXuDZhouNYuanJShenJ 2013 Antibacterial and anticoagulation properties of polyethylene/geneO-MPC nanocomposites J. Appl. Polym. Sci. 129 884 891 884–91 10.1002/app.38708
  • KabiriRNamaziH 2014 Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor Cellulose 21 3527 3539 3527–39 10.1007/s10570-014-0366-4
  • ZhangBAsmatuluRSoltaniS ALeL NKumarS S A 2014 Mechanical and thermal properties of hierarchical composites enhanced by pristine graphene and graphene oxide nanoinclusions J. Appl. Polym. Sci. 131 1 8 1–8 10.1002/app.40826
  • SelvakumarMJaganathanS KNandoG BChattopadhyayS 2015 Synthesis and characterization of novel polycarbonate based polyurethane/polymer wrapped hydroxyapatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility J. Biomed. Nanotechnol. 11 291 305 291–305 10.1166/jbn.2015.1975
  • SchoenF JLevyR J 2005 Calcification of tissue heart valve substitutes: progress toward understanding and prevention Annal. Thoracic Surgery 79 1072 1080 1072–80 10.1016/j.athoracsur.2004.06.033
  • ButanyJLeaskR 2001 The failure modes of biological prosthetic heart valves J. Long-Term Effects of Medical Implants 11 115 135 115–35 10.1615/JLongTermEffMedImplants.v11.i34.30
  • LeeC H 2009 Physiological variables involved in heart valve substitute calcification Expert Opin. Biological Therapy 9 1031 1042 1031–42 10.1517/14712590903085091
  • ClarkJ NOgleM FAshworthPBiancoR WLevyR J 2005 Prevention of calcification of bioprosthetic heart valve cusp and aortic wall with ethanol and aluminum chloride Annal. Thoracic Surgery 79 897 904 897–904 10.1016/j.athoracsur.2004.08.084
  • EveraertsF 2006 Reduction of calcification of carbodiimide-processed heart valve tissue by prior blocking of amine groups with monoaldehydes J. Heart Valve Disease 15 269 277 269–77
  • SucuN 2004 Inhibition of calcification with citric acid in pericardial bioprosthetic heart valve material: a preliminary report J. Heart Valve Disease 13 697 700 697–700
  • LiaoK K 2008 Mechanical stress: an independent determinant of early bioprosthetic calcification in humans Annal. Thoracic Surgery 86 491 495 491–5 10.1016/j.athoracsur.2008.03.061
  • JansenE J 2005 Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering Biomaterials 26 4423 4431 4423–31 10.1016/j.biomaterials.2004.11.011
  • LvJ-AMaJ-NHuang FuP-BYangSGongY-K 2008 Surface modification with both phosphorylcholine and stearyl groups to adjust hydrophilicity and hydrophobicity Appl. Surf. Sci. 255 498 501 498–501 10.1016/j.apsusc.2008.06.149
  • LeitaoA FGuptaSSilvaJ PReviakineIGamaM 2013 Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite Colloids Surf. B 111 493 502 493–502 10.1016/j.colsurfb.2013.06.031
  • KannanR Y 2006 The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite Biomacromolecules 7 215 223 215–23 10.1021/bm050590z
  • GonzalezR IPhillipsS HHoflundG B 2000 In situ oxygen-atom erosion study of polyhedral oligomeric silsesquioxane-siloxane copolymer J. Spacecr. Rockets 37 463 467 463–7 10.2514/2.3606
  • CassieA B 1948 Contact angles Discuss. Faraday Soc. 3 11 16 11–6 10.1039/df9480300011
  • MengJKongHXuH YSongLWangC YXieS S 2005 Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery J. Biomed. Mater. Res. Part A 74 208 214 208–14 10.1002/jbm.a.30315
  • DhandayuthapaniBVargheseS HAswathyR GYoshidaYMaekawaTSakthikumarD 2012 Evaluation of antithrombogenicity and hydrophilicity on zein-SWCNT electrospun fibrous nanocomposite scaffolds Int. J. Biomater. 2012 10 10.1155/2012/345029
  • JinS X 2013 Synthesis and anticoagulation activities of polymer/functional graphene oxide nanocomposites via reverse atom transfer radical polymerization (ratrp) Colloids Surf. B 101 319 324 319–24 10.1016/j.colsurfb.2012.07.004
  • ZhouN LGuHTangF FLiW XChenY YYuanJ 2013 Biocompatibility of novel carboxylated graphene oxide-glutamic acid complexes J. Mater. Sci. 48 7097 7103 7097–103 10.1007/s10853-013-7523-2
  • LeeD YKhatunZLeeJ-HLeeY-KInI 2011 Blood compatible graphene/heparin conjugate through noncovalent chemistry Biomacromolecules 12 336 341 336–41 10.1021/bm101031a
  • StoutD AYooJSantiago-MirandaA NWebsterT J 2012 Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular applications Int. J. Nanomed. 7 5653 5669 5653–69
  • KaneA BHurtR H 2008 Nanotoxicology: the asbestos analogy revisited Nat Nanotechnol. 3 378 379 378–9 10.1038/nnano.2008.182
  • KostarelosK 2008 The long and short of carbon nanotube toxicity Nat. Biotech. 26 774 776 774–6 10.1038/nbt0708-774
  • LisonDMullerJ 2008 To the Editor Toxicol. Sci. 101 179 180 179–80 10.1093/toxsci/kfm249
  • ShvedovaA A 2009 Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Ther. 121 192 204 192–204 10.1016/j.pharmthera.2008.10.009
  • PacurariMCastranovaVVallyathanV 2010 Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J. Toxicol. Environ. Health A 73 378 395 378–95 10.1080/15287390903486527
  • SanchezV CJachakAHurtR HKaneA B 2012 Biological interactions of graphene-family nanomaterials: an interdisciplinary review Chem. Res. Toxicol. 25 15 34 15–34 10.1021/tx200339h
  • AleniusHCatalánJLindbergHNorppaHPalomäkiJSavolainenK 2014 Nanomaterials and human health Handbook of Nanosafety San Diego, CA Academic 59 133 pp 59–133 ch 3
  • FilhoJ D S 2014 Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model Environ. Res. 134 9 16 9–16 10.1016/j.envres.2014.06.017
  • ChangY 2011 In vitro toxicity evaluation of graphene oxide on A549 cells Toxicol. Lett. 200 201 210 201–10 10.1016/j.toxlet.2010.11.016
  • RyooS RKimY KKimM HMinD H 2010 Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies ACS Nano 4 6587 6598 6587–98 10.1021/nn1018279
  • FubiniBGhiazzaMFenoglioI 2010 Physico-chemical features of engineered nanoparticles relevant to their toxicity Nanotoxicology 4 347 363 347–63 10.3109/17435390.2010.509519
  • SakamotoY 2009 Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats J. Toxicol. Sci. 34 65 76 65–76 10.2131/jts.34.65
  • Ma-HockL 2009 Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months Toxicol. Sci.: Official J. Soc. Toxicol. 112 468 481 468–81 10.1093/toxsci/kfp146
  • TakagiA 2008 Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube J. Toxicol. Sci. 33 105 116 105–16 10.2131/jts.33.105
  • PolandC A 2008 Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study Nat. Nanotechnol. 3 423 428 423–8 10.1038/nnano.2008.111
  • BiancoAKostarelosKPratoM 2011 Making carbon nanotubes biocompatible and biodegradable Chem. Commun. 47 10182 10188 10182–8 10.1039/c1cc13011k
  • VardharajulaS 2012 Functionalized carbon nanotubes: biomedical applications Int. J. Nanomed. 7 5361 5374 5361–74
  • ChenJ-PChangY-S 2011 Preparation and characterization of composite nanofibers of polycaprolactone and nano-hydroxyapatite for osteogenic differentiation of mesenchymal stem cells Colloids Surf. B 86 169 175 169–75 10.1016/j.colsurfb.2011.03.038
  • LiK 2010 Fabrication and characterization of polymer-hydroxyapatite nanocomposites for bone tissue engineering Thesis
  • FisherJ P 2002 Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model J. Biomed. Mater. Res. 59 547 556 547–56 10.1002/jbm.1268
  • SolheimESudmannBBangGSudmannE 2000 Biocompatibility and effect on osteogenesis of poly(ortho ester) compared to poly(DL-lactic acid) J. Biomed. Mater. Res. 49 257 263 257–63 10.1002/(SICI)1097-4636(200002)49:2<257::AID-JBM15>3.0.CO;2-5
  • MistryA SMikosA GJansenJ A 2007 Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering J. Biomed. Mater. Res. A 83 940 953 940–53 10.1002/jbm.a.31280
  • ZhangS MCuiF ZLiaoS SZhuYHanL 2003 Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite J. Mater. Sci. Mater. Med. 14 641 645 641–5 10.1023/A:1024083309982
  • EdwardsS LChurchJ SWerkmeisterJ ARamshawJ A 2009 Tubular micro-scale multi-walled carbon nanotube-based scaffolds for tissue engineering Biomaterials 30 1725 1731 1725–31 10.1016/j.biomaterials.2008.12.031