121
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Incidence and Formation of Petite Mutants in Lager Brewing Yeast Saccharomyces Cerevisiae (Syn. S. Pastorianus) Populations

, , , , &
Pages 72-80 | Published online: 01 Feb 2018

Literature Cited

  • American Society of Brewing Chemists. Report of the Subcommittee on microbial controls. J. Am. Soc. Brew. Chem. 37:133–134, 1979.
  • Ames, B. N. Mutagenesis and carcinogenesis: Endogenous and exogenous factors. Environ. Mol. Mutagen. 16 (Suppl. 14):66–77, 1989.
  • Backer, J., and Foury, F. Repair properties in yeast mitochondrial DNA mutators. Curr. Genet. 10:7–13, 1985.
  • Bajaj, B. K., and Tauro, P. Respiratory instability in distillery yeasts. Biotechnol. Lett. 16:631–636, 1994.
  • Bandas, E. L., and Zakharov, I. A. Induction of rho− mutations in yeast Saccharomyces cerevisiae by ethanol. Mutat. Res. 71:193–199, 1980.
  • Baranowska, H., Policinska, Z., and Jachymczyk, W. J. Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae. Curr. Genet. 28:521–525, 1995.
  • Bastos Rde, N., and Mahler, H. R. Molecular mechanisms of mitochondrial genetic activity: Effects of ethidium bromide on the deoxyribonucleic acid and energetics of isolated mitochondria. J. Biol. Chem. 249:6617–6627, 1974.
  • Bendich, A. J. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J. Mol. Biol. 255:564–588, 1996.
  • Bernardi, G., Culard, F., Fonty, G., Goursot, R., and Prunell, A. The cytoplasmic petite mutation in Saccharomyces cerevisiae. In: Biochemistry and Genetics of Yeasts. M. Bacila, B. L. Horecker, and A. O. M. Stoppani, eds. Academic Press, New York. Pp. 241–254, 1979.
  • Borst, P., and Grivell, L. A. The mitochondrial genome of yeast. Cell 15:705–723, 1978.
  • Bos, J. L., Osinga, K. A., Vanderhorst, G., Hecht, N. B., Tabak, H. F., Vanommen, G. J. B., and Borst, P. Splice point sequence and transcripts of the intervening sequence in the mitochondrial 21S ribosomal RNA gene of yeast. Cell 20:207–214, 1980.
  • Cahill, G., Murray, D. M., Walsh, P. K., and Donnelly, D. Effect of the concentration of propagation wort on yeast cell volume and fermentation performance. J. Am. Soc. Brew. Chem. 58:14–20, 2000.
  • Canete, M., Juarranz, A., Lopez-Nieva, P., Alonso-Torcal, C., Villanueva, A., and Stockert, J. C. Fixation and permanent mounting of fluorescent probes after vital labelling of cultured cells. Acta Histochem. 103:117–126, 2001.
  • Castrejon, F., Codon, A. C., Cubero, B., and Benitez, T. Acetaldehyde and ethanol are responsible for mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) in flor yeasts. Syst. Appl. Microbiol. 25:462–467, 2002.
  • Chi, Z., and Arneborg, N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J. Appl. Microbiol. 86:1047–1052, 1999.
  • Clark-Walker, G. D., and Gabormik, G. I. Mitochondrial genetics, circular DNA and mechanism of petite mutation in yeast. Genet. Res. 24:43–57, 1974.
  • Conde Zurita, J., and Mascort Saurez, J. L. Effects of the mitochondrial genome on the fermentation behaviour of brewing yeast. European Brewery Convention Monograph 7, Flavour, Copenhagen. Fachverlag Hans Carl, Nürnberg, Germany. Pp. 177–186, 1981.
  • Contamine, V., and Picard, M. Maintenance and integrity of the mitochondrial genome: A plethora of nuclear genes in the budding yeast. Microbiol. Mol. Biol. Rev. 64:281–315, 2000.
  • Croteau, D. L., Stierum, R. H., and Bohr, V. A. Mitochondrial DNA repair pathways. Mutat. Res. 434:137–148, 1999.
  • Deans, K., Pinder, A., Catley, B. J., and Hodgson, J. A. Effects of cone cropping and serial re-pitch on the distribution of cell ages in brewery yeast. Eur. Brew. Conv. Congr. 26:469–476, 1997.
  • de Nobrega, R., and Mahler, H. R. Modulation of petite induction by low concentrations of ethidium bromide. Biochem. Biophys. Res. Commun. 69:528–537, 1976.
  • Drake, J. W. Spontaneous mutation. Annu. Rev. Genet. 25:125–146, 1991.
  • Ernandes, J. R., Williams, J. W., Russell, I., and Stewart, G. G. Respiratory deficiency in brewing yeast strains—Effects on fermentation, flocculation, and beer flavor components. J. Am. Soc. Brew. Chem. 51:16–20, 1993.
  • European Brewery Convention. Analytica-EBC. Schweizer Brauerei-Rundshau, Zurich, Switzerland, 1987.
  • Ferguson, L. R., and von Borstel, R. C. Induction of the cytoplasmic ‘petite’ mutation by chemical and physical agents in Saccharomyces cerevisiae. Mutat. Res. 265:103–148, 1992.
  • Fernandez, S. S., Gonzalez, M. G., and Sierra, J. A. Evaluation of the effect if acid washing on the fermentative and respiratory behaviour of yeasts by the acidification power test. Tech. Q. Master Brew. Assoc. Am. 30:1–8, 1993.
  • Foury, F. Repair of mitochondrial DNA in Saccharomyces cerevisiae: Induction of cytoplasmic petite mutants in a nuclear mutant exhibiting thermosensitive mitochondrial deoxyribonuclease activity. J. Biol. Chem. 257:781–787, 1982.
  • Fukunaga, M., Yielding, L. W., Firth, W. J., 3rd, and Yielding, K. L. Comparison of petite induction in yeast by acridines, ethidium and their photoaffinity probes. Mutat. Res. 82:87–93, 1981.
  • Gasent-Ramirez, J. M., Castrejon, F., Querol, A., Ramon, D., and Benitez, T. Genomic stability of Saccharomyces cerevisiae baker's yeasts. Syst. Appl. Microbiol. 22:329–340, 1999.
  • Goebl, M. G., and Petes, T. D. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46:983–992, 1986.
  • Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D. R., and Marmur, J. The petite mutation in yeast: Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. Mol. Biol. 52:323–335, 1970.
  • Good, L., Dowhanick, T. M., Ernandes, J. E., Russell, I., and Stewart, G. G. Rho− mitochondrial genomes and their influence on adaptation to nutrient stress in lager yeast strains. J. Am. Soc. Brew. Chem. 51:35–39, 1993.
  • Granchi, L., Ganucci, D., Viti, C., Giovannetti, L., and Vincenzini, M. Saccharomyces cerevisiae biodiversity in spontaneous commercial fermentations of grape musts with ‘adequate’ and ‘inadequate’ assimilablenitrogen content. Lett. Appl. Microbiol. 36:54–58, 2003.
  • Hall, R. M., Trembath, M. K., Linnane, A. W., Wheelis, L., and Criddle, R. S. Factors affecting petite induction and the recovery of respiratory competence in yeast cells exposed to ethidium bromide. Mol. Gen. Genet. 144:253–262, 1976.
  • Hammond, J. R. M. Brewers yeasts. In: The Yeasts. Vol. 5: Yeast Technology, 2nd ed. A. H. Rose and J. S. Harrison, eds. Academic Press Ltd., London. Pp. 7–67, 1993.
  • Heidenreich, E., and Wintersberger, U. Starvation for a specific amino acid induces high frequencies of rho− mutants in Saccharomyces cerevisiae. Curr. Genet. 31:408–413, 1997.
  • Heyting, C., Meijlink, F. C. P. W., Verbeet, M. P., Sanders, J. P. M., Bos, J. L., and Borst, P. Fine structure of the 21S ribosomal RNA region on yeast mitochondrial DNA 1: Construction of the physical map and localization of the cistron for the 21S mitochondrial ribosomal RNA. Mol. Gen. Genet. 168:231–246, 1979.
  • Hodgson, J. A., Pinder, A., Catley, B. J., and Deans, K. Effect of cone cropping and serial repitch on the distribution of cell ages in brewery yeast. Tech. Q. Master Brew. Assoc. Am. 38:175–177, 1999.
  • Ibeas, J. I., and Jimenez, J. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl. Environ. Microbiol. 63:7–12, 1997.
  • Institute of Brewing, Analysis Committee of the IoB. Recommended Methods of Analysis. IoB, London, 1982.
  • Iwamoto, Y., Mifuchi, I., Yielding, L. W., Firth, W. J., 3rd, and Yielding, K. L. Induction of cytoplasmically inherited respiration-deficient (‘petite’) mutants by photodynamic action of acridine compounds. Mutat. Res. 125:213–219, 1984.
  • Jimenez, J., and Benitez, T. Adaptation of yeast cell membranes to ethanol. Appl. Environ. Microbiol. 53:1196–1198, 1987.
  • Jimenez, J., Longo, E., and Benitez, T. Induction of petite yeast mutants by membrane active agents. Appl. Environ. Microbiol. 54:3126–3132, 1988.
  • Kang, D., and Hamasaki, N. Maintenance of mitochondrial DNA integrity: Repair and degradation. Curr. Genet. 41:311–322, 2002.
  • Lai, C. Y., Jaruga, E., Borghouts, C., and Jazwinski, S. M. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162:73–87, 2002.
  • Leclaire, J., Kennedy, A. I., and Smart, K. A. Occurrence of cold shock genes in ale and lager yeast strains. Proc. Congr. Eur. Brew. Conv. 29:29, 2003.
  • Ling, F., Morioka, H., Ohtsuka, E., and Shibata, T. A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res. 28:4956–4963, 2000.
  • Lopez, V., Querol, A., Ramon, D., and Fernandez-Espinar, M. T. A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int. J. Food Microbiol. 68:75–81, 2001.
  • MacAlpine, D. M., Perlman, P. S., and Butow, R. A. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J. 19:767–775, 2000.
  • Mahler, H. R. Structural requirements for mitochondrial mutagenesis. J. Supramol. Struct. 1:449–460, 1973.
  • Mattick, J. S., and Nagley, P. Comparative studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome of Saccharomyces cerevisiae. Mol. Gen. Genet. 152:267–276, 1977.
  • Mayer, V. W., Goin, C. J., and Zimmermann, F. K. Aneuploidy and other genetic effects induced by hydroxyurea in Saccharomyces cerevisiae. Mutat. Res. 160:19–26, 1986.
  • McCaig, R., and Bendiak, D. Yeast handling studies. I. Agitation of stored pitching yeast. J. Am. Soc. Brew. Chem. 43:114–118, 1985.
  • McCaig, R., and Bendiak, D. Yeast handling studies. II. Temperature of storage of pitching yeast. J. Am. Soc. Brew. Chem. 43:119–122, 1985.
  • Monroe, D. S., Jr., Leitzel, A. K., Klein, H. L., and Matson, S. W. Biochemical and genetic characterization of Hmi1p, a yeast DNA helicase involved in the maintenance of mitochondrial DNA. Yeast 22:1269–1286, 2005.
  • Morimoto, R., Merten, S., Lewin, A., Martin, N. C., and Rabinowitz, M. Physical mapping of genes on yeast mitochondrial-DNA, localization of antibiotic resistance loci and rRNA and tRNA genes. Mol. Gen. Genet. 163:241–255, 1978.
  • Morrison, K. B., and Suggett, A. Yeast handling, petite mutants and lager flavor. J. Inst. Brew. 89:141–142, 1983.
  • Moustacchi, E., Perlman, P. S., and Mahler, H. R. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to “petite” induction. Mol. Gen. Genet. 148:251–261, 1976.
  • Nagai, S. High frequency production of respiratory mutants in yeast under nutritional deficiencies. Mutat. Res. 8:557–564, 1969.
  • Norton, S., Watson, K., and Damore, T. Ethanol tolerance of immobilized brewer's yeast cells. Appl. Microbiol. Biotechnol. 43:18–24, 1995.
  • Nunnari, J., Wong, E. D., Meeusen, S., and Wagner, J. A. Studying the behavior of mitochondria. In: Methods in Enzymology. Vol. 351, Part C. C. Guthrie and G. R. Fink, eds. Academic Press, New York. Pp. 381–456, 2002.
  • O'Connor-Cox, E. S. C., Lodolo, E. J., and Axcell, B. C. The relative importance of mitochondrial protein synthesis to brewing yeast performance. J. Am. Soc. Brew. Chem. 53:128–135, 1995.
  • Ogur, M., John, R. S., and Nagai, S. Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125:928–929, 1957.
  • Oliver, S. G. From DNA sequence to biological function. Nature 379:597–600, 1996.
  • Oliver, S. G., and Williamson, D. H. The molecular events involved in the induction of petite yeast mutants by fluorinated pyrimidines. Mol. Gen. Genet. 146:253–259, 1976.
  • Oliver, S. G., and Williamson, D. H. The conditions required for the induction of petite yeast mutants by fluorinated pyrimidines. Mol. Gen. Genet. 146:261–268, 1976.
  • Oliver, S. G., and Williamson, D. H. Mutants of yeast specifically resistant to petite induction by fluorinated pyrimidines. Biochem. Genet. 15:775–783, 1977.
  • Panoutsopoulou, K., Hutter, A., Jones, P., Gardner, D. C. J., and Oliver, S. G. Improvement of ethanol production by an industrial yeast strain via multiple gene deletions. J. Inst. Brew. 107:49–53, 2001.
  • Perlman, P. S., and Mahler, H. R. A premutational state induced in yeast by ethidium bromide. Biochem. Biophys. Res. Commun. 44:261–267, 1971.
  • Piskur, J., Smole, S., Groth, C., Petersen, R. F., and Pedersen, M. B. Structure and genetic stability of mitochondrial genomes vary among yeasts of the genus Saccharomyces. Int. J. Syst. Bacteriol. 48:1015–1024, 1998.
  • Poli, P., Buschini, A., Restivo, F. M., Ficarelli, A., Cassoni, F., Ferrero, I., and Rossi, C. Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis 14:547–556, 1999.
  • Powell, C. D., Quain, D. E., and Smart, K. A. The impact of media composition and petite mutation on the longevity of a polyploid brewing yeast strain. Lett. Appl. Microbiol. 31:46–51, 2000.
  • Powell, C., Quain, D. E., and Smart, K. A. The impact of yeast sedimentation on the distribution of cells within the cone of a cylindroconical vessel. In: Proc. 27th Conv. Inst. Brew. (Asia Pac. Sect.), Adelaide. Institute of Brewing, London, 2002.
  • Powell, C. D., Quain, D. E., and Smart, K. A. The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. 3:149–157, 2003.
  • Ramos Jeunehomme, C., Dewerchin, M., Carlier, A., and Masschelein, C. A. The potential of lager yeast mitochondrial DNA in the production of diacetyl negative mutants. Proc. Congr. Eur. Brew. Conv. 20:283–290, 1985.
  • Rayko, E., and Goursot, R. Amphimeric mitochondrial genomes of petite mutants of yeast. III. Generation by linking two secondary-structure-dependent illegitimate recombination events. Curr. Genet. 35:14–22, 1999.
  • Rickwood, R., Dujon, B., and Darley-Usmar, M. Yeast mitochondria. In: Yeast, A Practical Approach. I. Campbell and J. H. Duffus, eds. IRL Press, Oxford. P. 185, 1991.
  • Ristow, H., Seyfarth, A., and Lochmann, E. R. Chromosomal damages by ethanol and acetaldehyde in Saccharomyces cerevisiae as studied by pulsed field gel electrophoresis. Mutat. Res. 326:165–170, 1995.
  • Rosin, M. P., and Zimmerman, A. M. Induction of cytoplasmic petite mutants of Saccharomyces cerevisiae by hydrostatic pressure. J. Cell Sci. 26:373–385, 1977.
  • Rosin, M. P., and Zimmerman, A. M. Mutagenic action of hydrostatic pressure on yeast, a cell cycle analysis. Mutat. Res. 44:207–216, 1977.
  • Sabate, J., Cano, J., Esteve-Zarzoso, B., and Guillamon, J. M. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res. 157:267–274, 2002.
  • Sato, M., Watari, J., and Shinotsuka, K. Genetic instability in flocculation of bottom-fermenting yeast. J. Am. Soc. Brew. Chem. 59:130–134, 2001.
  • Sawyer, D. E., and Van Houten, B. Repair of DNA damage in mitochondria. Mutat. Res. 434:161–176, 1999.
  • Silhankova, L., Savel, J., and Mostek, J. Respiratory deficient mutants of bottom brewer's yeast. I. Frequencies and types of mutant in various strains. J. Inst. Brew. 76:280–288, 1970.
  • Simpson, W. J., and Hammond, J. R. M. The response of brewing yeast to acid washing. J. Inst. Brew. 93:347–354, 1989.
  • Van Zandycke, S., Cavaliere, R., Powell, C., and Smart, K. A. Phenotypic and genotypic characteristics of petite mutant strains. In: Proc. 27th Conv. Inst. Brew. (Asia Pac. Sect.), Adelaide. Institute of Brewing, London, 2002.
  • Villa, L. L., and Juliani, M. H. Induction of cytoplasmic petite in yeast by guanidine hydrochloride: Combined treatment with other inducing agents. Mutat. Res. 71:67–75, 1980.
  • Wallis, O. C., Ottoleng, P., and Whittaker, P. A. Induction of petite mutants in yeast by starvation in glycerol. Biochem. J. 127:46–47, 1972.
  • Wallis, O. C., and Whittaker, P. A. Induction of petite mutants in yeast by starvation in glycerol. J. Gen. Microbiol. 84:11–18, 1974.
  • Watari, J., Sato, M., Ogawa, M., and Shinotsuka, K. Genetic and physiological instability of brewing yeast. European Brewery Convention Monograph 28, Yeast Physiology—A New Era of Opportunity, Nutfield. Fachverlag Hans Carl, Nürnberg, Germany. Pp. 148–159, 1999.
  • Wheelis, L., Trembath, M. K., and Criddle, R. S. Petite induction and recovery in the presence of high levels of ethidium bromide. Biochem. Biophys. Res. Commun. 65:838–845, 1975.
  • Wightman, P., Quain, D. E., and Meaden, P. G. Analysis of production brewing strains of yeast by DNA fingerprinting. Lett. Appl. Microbiol. 22:90–94, 1996.
  • Wilcocks, K. L., and Smart, K. A. The importance of surface charge and hydrophobicity for the flocculation of chain-forming brewing yeast strains and resistance of these parameters to acid washing. FEMS Microbiol. Lett. 134:293–297, 1995.
  • Williamson, D. H., Maroudas, N. G., and Wilkie, D. Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by antibacterial antibiotics. J. Gen. Microbiol. 63:7–8, 1970.
  • Williamson, D. H., Maroudas, N. G., and Wilkie, D. Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Mol. Gen. Genet. 111:209–223, 1971.
  • Yamamura, M., and Kamihara, T. Respiratory deficient mutation at elevated temperature in Saccharomyces cerevisiae, stimulatory effect of inorganic salts. Agric. Biol. Chem. 54:827–828, 1990.
  • Zelenaya-Troitskaya, O., Newman, S. M., Okamoto, K., Perlman, P. S., and Butow, R. A. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148:1763–1776, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.