51
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Part I. The Use of Lactobacillus Plantarum Starter Cultures to Inhibit Rootlet Growth during Germination of Barley, Reducing Malting Loss, and its Influence on Malt Quality

, , &
Pages 227-238 | Published online: 05 Feb 2018

Literature Cited

  • Axelsson, L. Lactic acid bacteria: Classification and physiology. In: Lactic Acid Bacteria: Microbiological and Functional Aspects. S. Salminen, A. von Wright, and A. Ouwehand, eds. Marcel Dekker, New York. Pp. 19–86, 2004.
  • Bamforth, C. W. Current perspectives on the role of enzymes in brewing. J. Cereal Sci. 50:353–357, 2009.
  • Boekhorst, J., Wels, M., Kleerebezem, M., and Siezen, R. J. The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152:3175–3183, 2006.
  • Briggs, D. E., Hough, J. S., Stevens, R., and Young, T. W. Malting and Brewing Science. Blackie Academic & Professional, London, 1981.
  • Celus, I., Brijs, K., and Delcour, J. A. The effects of malting and mashing on barley protein extractability. J. Cereal Sci. 44:203–211, 2006.
  • Chandra, G. S., Proudlove, M. O., and Baxter, E. D. The structure of barley endosperm—An important determinant of malt modification. J. Sci. Food Agric. 79:37–46, 1999.
  • De Vuyst, L., and Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13:194–199, 2007.
  • European Brewing Convention. Analytica-EBC. Verlag Hans Carl Getränke-Fachverlag, Nürnberg, Germany, 2005.
  • Fincher, G. B. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. 40:305–346, 1989.
  • Galal, A. M., Johnson, J. A., and Varriano-Marston, E. Lactic and volatile (C2-C5) organic acids of San Francisco sourdough French bread. Cereal Chem. 55:461–468, 1978.
  • Grosselindemann, E., Graebe, J. E., Stockl, D., and Hedden, P. Ent-kaurene biosynthesis in germinating barley (Hordeum vulgare L., cv. Himalaya) caryopses and its relation to alpha-amylase production. Plant Physiol. 96:1099–1104, 1991.
  • Gussin, E. J., and Lynch, J. M. Effect of local concentrations of acetic acid around barley roots on seedling growth. New Phytol. 92:345–348, 1982.
  • Holopainen, U. R. M., Wilhelmson, A., Salmenkallio-Marttila, M., Peltonen-Sainio, P., Rajala, A., Reinikainen, P., Kotavta, E., Simolin, H., and Home, S. Endosperm structure affects the malting quality of barley (Hordeum vulgare L.). J. Agric. Food Chem. 53:7279–7287, 2005.
  • Hrmova, M., and Fincher, G. B. Structure-function relationships of beta-d-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol. 47:73–91, 2001.
  • Irving, D. Seed structure and histochemistry of Prosopis velutina (Leguminosae). Bot. Gaz. 145:340–345, 1984.
  • Jackson, P. C., and Taylor, J. M. Effects of organic acids on ion uptake and retention in barley roots. Plant Physiol. 46:538–542, 1970.
  • Jin, Y.-L., Speers, R. A., Paulson, A. T., and Stewart, R. J. Barley β-glucans and their degradation during malting and brewing. Tech. Q. Master Brew. Assoc. Am. 41:231–240, 2004.
  • Jones, B. L. Endoproteases of barley and malt. J. Cereal Sci. 42:139–156, 2005.
  • Jones, B. L., Marinac, L. A., and Fontanini, D. Quantitative study of the formation of endoproteolytic activities during malting and their stabilities to kilning. J. Agric. Food Chem. 48:3898–3905, 2000.
  • Kanauchi, M., and Bamforth, C. W. The relevance of different enzymes for the hydrolysis of beta-glucans in malting and mashing. J. Inst. Brew. 114:224–229, 2008.
  • Klose, C., Schehl, B. D., and Arendt, E. K. Protein changes during malting of barley using novel lab-on-a-chip technology in comparison to two-dimensional gel electrophoresis. Brew. Sci. (Monatsschr. Brauwiss.) 61:56–65, 2008.
  • Klose, C., Schehl, B. D., and Arendt, E. K. Fundamental study on protein changes taking place during malting of oats. J. Cereal Sci. 49:83–91, 2009.
  • Koehler, S., and Ho, T. H. D. Purification and characterization of gibberellic acid-induced cysteine endoproteases in barley aleurone layers. Plant Physiol. 87:95–103, 1988.
  • Kunze, W. Technology Brewing and Malting. VLB Berlin, Verlagsabteilung, Berlin, 2004.
  • Laitila, A., Sarlin, T., Kotaviita, E., Huttunen, T., Home, S., and Wilhelmson, A. Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J. Ind. Microbiol. Biotechnol. 34:701–713, 2007.
  • Laitila, A., Sweins, H., Vilpola, A., Kotaviita, E., Olkku, J., Home, S., and Haikara, A. Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J. Agric. Food Chem. 54:3840–3851, 2006.
  • Laitila, A., Wilhelmson, A., Kotaviita, E., Olkku, J., Home, S., and Juvonen, R. Yeasts in an industrial malting ecosystem. J. Ind. Microbiol. Biotechnol. 33:953–966, 2006.
  • Lásztity, R. Barley Proteins: The Chemistry of Cereal Proteins. CRC Press, Boca Raton, FL, 1996.
  • Lee, R. B. Effects of organic acids on loss of ions from barley roots. J. Exp. Bot. 28:578–587, 1977.
  • Lee, W. J., and Pyler, R. E. Barley malt limit dextrinase: Varietal, environmental and malting effect. J. Am. Soc. Brew. Chem. 42:11–17, 1984.
  • Lowe, D. P., Arendt, E. K., Soriano, A. M., and Ulmer, H. M. The influence of lactic acid bacteria on the quality of malt. J. Inst. Brew. 111:42–50, 2005.
  • Lynch, J. M. Effects of organic acids on the germination of seeds and growth of seedlings. Plant Cell Environ. 3:255–259, 1980.
  • MacGregor, A. W., Dushnicky, L. G., Schroeder, S. W., and Ballance, G. M. Changes in barley endosperms during early stages of germination. J. Inst. Brew. 100:85–90, 1994.
  • Marchylo, B. A., Kruger, J. E., and Hatcher, D. High-performance liquid chromatographic and electrophoretic analysis of hordein during malting for two barley varieties of contrasting malting quality. Cereal Chem. 63:219–231, 1986.
  • McFadden, G. I., Ahluwalia, B., Clarke, A. E., and Fincher, G. B. Expression sites and developmental regulation of genes encoding (1→3,1→4)-beta-glucanases in germinated barley. Planta 173:500–508, 1988.
  • Meroth, C. B., Walter, J., Hertel, C., Brandt, M. J., and Hammes, W. P. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69:475–482, 2003.
  • Moroni, A. V., Arendt, E. K., and Bello, F. D. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol. 28(3):497–502, 2011.
  • Murphy, M. G., O'Connor, L., Walsh, D., and Condon, S. Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch. Microbiol. 141:75–79, 1985.
  • Niranjan Rao, J., and Mikkelsen, D. S. Effect of acetic, propionic, and butyric acids on young rice seedlings' growth. Agron. J. 69:923–928, 1977.
  • Nolan, R. C., and Ho, T. H. D. Hormonal regulation of alpha-amylase expression in barley aleurone layers—The effects of gibberellic-acid removal and abscisic-acid and phaseic-acid treatments. Plant Physiol. 88:588–593, 1988.
  • Noots, I., Delcour, J. A., and Michiels, C. W. From field barley to malt: Detection and specification of microbial activity for quality aspects. Crit. Rev. Microbiol. 25:121–153, 1999.
  • Noots, I., Derycke, V., Cornelis, K., Michiels, C., Delcour, J. A., Delrue, R., De Keersmaeker, J., and Coppens, T. Degradation of starchy endosperm cell walls in nongerminating sterilized barley by fungi. J. Agric. Food Chem. 49:975–981, 2001.
  • Noots, I., Derycke, V., Jensen, H. E., Michiels, C., Delcour, J. A., and Coppens, T. Studies on barley starchy endosperm cell wall degradation by Rhizopus VII. J. Cereal Sci. 37:81–90, 2003.
  • Noots, I., Derycke, V., Michiels, C., Delcour, J. A., Delrue, R., and Coppens, T. Improvement of malt modification by use of Rhizopus VII as starter culture. J. Agric. Food Chem. 49:3718–3724, 2001.
  • Osman, A. M., Coverdale, S. M., Onley-Watson, K., Bell, D., and Healy, P. The gel filtration chromatographic-profiles of proteins and peptides of wort and beer: Effects of processing—Malting, mashing, kettle boiling, fermentation and filtering. J. Inst. Brew. 109:41–50, 2003.
  • Passos, F. V., Fleming, H. P., Ollis, D. F., Felder, R. M., and McFeeters, R. F. Kinetics and modeling of lactic-acid production by Lactobacillus plantarum. Appl. Environ. Microbiol. 60:2627–2636, 1994.
  • Pfenninger, H. Brautechnische Analysenmethoden. Selbstverlag der MEBAK, Freising-Weihenstephan, Germany, 1996.
  • Pfenninger, H. Brautechnische Analysenmethoden. Selbstverlag der MEBAK, Freising-Weihenstephan, Germany, 1997.
  • Raulio, M., Wilhelmson, A., Salkinoja-Salonen, M., and Laitila, A. Ultrastructure of biofilms formed on barley kernels during malting with and without starter culture. Food Microbiol. 26:437–443, 2009.
  • Rogers, J. C. RNA complementary to alpha-amylase messenger RNA in barley. Plant Mol. Biol. 11:125–138, 1988.
  • Spillane, M. H., and Briggs, D. E. The use of acetic acid and sulfur dioxide to limit malting loss. J. Inst. Brew. 72:398–403, 1966.
  • Strom, K., Sjogren, J., Broberg, A., and Schnurer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(L-Phe-trans-4-OH-l-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68:4322–4327, 2002.
  • Stuart, I. M., Loi, L., and Fincher, G. B. Development of (1→3,1→4)-beta-d-glucan endohydrolase isoenzymes in isolated scutella and aleurone layers of barley (Hordeum vulgare). Plant Physiol. 80:310–314, 1986.
  • Sundblom, N.-O., and Mikola, J. On the nature of the proteinases secreted by the aleurone layer of barley grain. Physiol. Plant. 27:281–284, 1972.
  • Tamminen, M., Joutsjoki, T., Sjoblom, M., Joutsen, M., Palva, A., Ryhanen, E. L., and Joutsjoki, V. Screening of lactic acid bacteria from fermented vegetables by carbohydrate profiling and PCR-ELISA. Lett. Appl. Microbiol. 39:439–444, 2004.
  • U.S. Food and Drug Administration. Potassium bromate, 172.730. In: Food Additives Permitted for Direct Addition to Food for Human Consumption. FDA, Washington, DC, 2009.
  • Vaughan, A., Eijsink, V. G. H., O'Sullivan, T. F., O'Hanlon, K., and van Sinderen, D. An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J. Appl. Microbiol. 91:131–138, 2001.
  • Zeevaart, J. A. D., and Creelman, R. A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. 39:439–473, 1988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.