29
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Comparisons of Amylolytic Enzyme Activities and β-Amylases with Differing Bmy1 Intron III Alleles to Osmolyte Concentration and Malt Extract during Congress Mashing with North American Barley CultivarsFootnote1

, &
Pages 193-207 | Published online: 05 Feb 2018

Literature Cited

  • American Society of Brewing Chemists. Malt-4, Malt-6A Diastatic Power. In: Methods of Analysis, 8th ed. The Society, St. Paul, MN, 1992.
  • Bamforth, C. W. Barley and malting. In: Scientific Principles of Malting and Brewing. American Society of Brewing Chemists, St. Paul, MN. Pp. 21–44, 2006.
  • Bamforth, C. W. The components of barley and their degradation during malting and mashing. In: Scientific Principles of Malting and Brewing. American Society of Brewing Chemists, St. Paul, MN. Pp. 45–57, 2006.
  • Bamforth, C. W. Chemistry and biochemistry for brewers. In: Scientific Principles of Malting and Brewing. The Society, St. Paul, MN. Pp. 189–231, 2006.
  • Bamforth, C. W. Current perspectives on the role of enzymes in brewing. J. Cereal Sci. 50:353–357, 2009.
  • Beers, E. P., and Duke, S. H. Characterization of α-amylase from shoots and cotyledons of pea (Pisum sativum L.) seedlings. Plant Physiol. 92:1154–1163, 1990.
  • Briggs, D. E. An introduction to malts and their uses. In: Malts and Malting. Blackie Academic &; Professional, London. Pp. 1–34, 1998.
  • Briggs, D. E. Grain physiology. In: Malts and Malting. Blackie Academic &; Professional, London. Pp. 79–132, 1998.
  • Briggs, D. E. The biochemistry of malting. In: Malts and Malting. Blackie Academic &; Professional, London. Pp. 133–228, 1998.
  • Briggs, D. E. The principles of mashing. In: Malts and Malting. Blackie Academic &; Professional, London. Pp. 229–244, 1998.
  • Briggs, D. E. Malt analysis. In: Malts and Malting. Blackie Academic &; Professional, London. Pp. 579–614, 1998.
  • Buttimer, E. T., and Briggs, D. E. Mechanisms of release of bound β-amylase. J. Inst. Brew. 106:71–82, 2000.
  • Clark, S. E., Hayes, P. M., and Henson, C. A. Effects of single nucleotide polymorphisms in the β-amylase1 alleles from barley on functional properties of the enzymes. Plant Physiol. Biochem. 41:798–804, 2003.
  • Delcour, J. A., and Verschaeve, S. G. Malt diastatic activity. II. A modified EBC-diastatic power assay for the selective estimation of β-amylase activity: Time and temperature dependence of the release of reducing sugars. J. Inst. Brew. 93:296–301, 1987.
  • Doehlert, D. C., and Duke, S. H. Specific determination of α-amylase activity in crude plant extracts containing β-amylase. Plant Physiol. 71:229–234, 1983.
  • Doehlert, D. C., Duke, S. H., and Anderson, L. Beta-amylases from alfalfa (Medicago sativa L.) roots. Plant Physiol. 69:1096–1102, 1982.
  • Doehlert, D. C., Kuo, T. M., Juvik, J. A., Beers, E. P., and Duke, S. H. Characteristics of carbohydrate metabolism in sweet corn (sugary-1) endosperms. J. Am. Soc. Hortic. Sci. 118:661–666, 1993.
  • Duke, S. H., and Henson, C. A. Green malt osmolyte concentration as an early indicator of finished malt quality. J. Am. Soc. Brew. Chem. 65:145–150, 2007.
  • Duke, S. H., and Henson, C. A. A comparison of barley malt quality measurements and malt sugar concentrations. J. Am. Soc. Brew. Chem. 66:151–161, 2008.
  • Duke, S. H., and Henson, C. A. A comparison of barley malt amylolytic enzyme activities as indicators of malt sugar concentrations. J. Am. Soc. Brew. Chem. 67:99–111, 2009.
  • Duke, S. H., and Henson, C. A. A comparison of barley malt osmolyte concentrations and standard malt quality measurements as indicators of barley malt amylolytic enzyme activities. J. Am. Soc. Brew. Chem. 67:206–216, 2009.
  • Duke, S. H., and Henson, C. A. Tracking the progress of Congress mashing with osmolyte concentration and malt extract value in North American barley cultivars and relationships between wort osmolyte concentration, malt extract value, and ASBC measures of malt quality. J. Am. Soc. Brew. Chem. 69:28–38, 2011.
  • Duke, S. H., and Henson, C. A. Tracking the progress of sugar production during Congress mashing with North American barley cultivars and comparisons to wort osmolyte concentrations and malt extract. J. Am. Soc. Brew. Chem. 69:200–213, 2011.
  • Duke, S. H., Vinje, M. A., and Henson, C. A. Tracking amylolytic enzyme activities during Congress mashing with North American barley cultivars: Comparisons of patterns of activity and β-amylases with differing Bmy1 intron III alleles and correlations of amylolytic enzyme activities. J. Am. Soc. Brew. Chem. 70:10–28, 2012.
  • Duke, S. H., Vinje, M. A., and Henson, C. A. Comparisons of amylolytic enzyme activities and β-amylases with differing Bmy1 intron III alleles to sugar production during Congress mashing with North American barley cultivars. J. Am. Soc. Brew. Chem. 70:230–248, 2012.
  • European Brewery Convention. Analytica–EBC. Fachverlage Hans Carl, CL Druckzentrum Copyland, Nürnberg, Germany, 2010.
  • Evans, D. E., Goldsmith, M., Dambergs, R., and Nischwitz, R. A comprehensive revaluation of small-scale Congress mash protocol parameters for determining extract and fermentability. J. Am. Soc. Brew. Chem. 69:13–27, 2011.
  • Evans, D. E., Li, C., and Eglinton, J. K. Improved prediction of malt fermentability by measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase: I. Survey of the levels of diastatic power enzymes in commercial malts. J. Am. Soc. Brew. Chem. 66:223–232, 2008.
  • Filichkin T. P., Vinje, M. A., Budde A. D., Corey A. E., Duke S. H., Gallagher, L. W., Helgesson, J., Henson, C. A., Obert, D. E., Ohm, J. B., Petrie, S. E., Ross, A. S., and Hayes, P. M. Phenotypic variation for diastatic power, β-amylase activity, and thermostability vs. Bmy1 allelic variation in North American barley. Crop Sci. 50:826–834, 2010.
  • Fincher, G. B. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:305–346, 1989.
  • Georg-Kraemer, J. E., Mundstock, E. C., and Cavalli-Molina, S. Developmental expression of amylases during barley malting. J. Cereal Sci. 33:279–288, 2001.
  • Gibson, T.S., Solah, V., Holmes, M. R. G., and Taylor, H.R. Diastatic power in malted barley—contributions of malt parameters to its development and the potential of barley grain β-amylase to predict malt diastatic power. J. Inst. Brew. 101:277–280, 1995.
  • Henson, C. A., and Duke, S. H. Osmolyte concentration as an indicator of malt quality. J. Am. Soc. Brew. Chem. 65:59–62, 2007.
  • Henson, C. A., and Duke, S. H. A comparison of standard and non-standard measures of malt quality. J. Am. Soc. Brew. Chem. 66:11–19, 2008.
  • Henson, C. A., Duke, S. H., Schwarz, P., and Horsley, R. Barley seed osmolyte concentration as an indicator of preharvest sprouting. J. Am. Soc. Brew. Chem. 65:125–128, 2007.
  • Huang, N., Stebbins, G. L., and Rodriguez, R. L. Classification and evolution of α-amylase genes in plants. Proc. Natl. Acad. Sci. USA 89:7526–7530, 1992.
  • Im, H, and Henson, C. A. Characterization of high pI α-glucosidase from germinated barley seeds: Substrate specificity, subsite affinities and active-site residues. Carbohydr. Res. 277:145–159, 1995.
  • Institute of Brewing, Analysis Committee of the IoB. Recommended Methods of Analysis. IoB, London, 1998.
  • Jensen, M. T., Gottschalk, T. E., and Svensson, B. Differences in conformational stability of barley alpha-amylase isozymes 1 and 2. Role of charged groups and isozyme 2 specific salt bridges. J. Cereal Sci. 38:289–300, 2003.
  • Kakefuda, G., and Duke, S. H. Electrophoretic transfer as a technique for the detection and identification of plant amylolytic enzymes in polyacrylamide gels. Plant Physiol. 75:278–280, 1984.
  • Kakefuda, G., and Duke, S. H. Characterization of pea chloroplast Denzyme (4-α-D-glucanotransferase). Plant Physiol. 91:136–143, 1989.
  • Kakefuda, G., Duke, S. H., and Hostak, M. S. Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L. Planta 168:175–182, 1986.
  • Kaplan, F., and Guy, C. L. β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 135:1674–1684, 352–392, 2004.
  • Khursheed, B., and Rogers, J. C. Barley α-amylase genes, quantitative comparison of steady-state mRNA levels from individual members of the two different families expressed in aleurone cells. J. Biol. Chem. 263:18953–18960, 1988.
  • Kristensen, M., Lok, F., Planchot, V., Svendsen, I., Leah, R., and Svensson, B. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley. Biochim. Biophys. Acta 1431:538–546, 1999.
  • Kuntz, R. J., and Bamforth, C. W. Time course for the development of enzymes in barley. J. Inst. Brew. 113:196–205, 2007.
  • Kunze, W. Malt production 2.8.3.2 Congress mash. In: Technology Brewing and Malting. Versuchs- und Lebranstalt für Brauerei, Berlin. Pp. 157–159, 1999.
  • Li, C.D., Langridge, P., Zhang, X. Q., Eckstein, P. E., Rossnagel, B. G., Lance, R. C. M., Lefol, E. B., Lu, M. Y., Harvey, B. L., and Scoles, G. J. Mapping of barley (Hordeum vulgare L.) β-amylase alleles in which an amino acid substitution determines β-amylase isoenzyme type and the level of free β-amylase. J. Cereal Sci. 35:39–50, 2002.
  • Lizotte, P. A., Henson, C. A., and Duke, S. H. Purification and characterization of pea epicotyl β-amylase. Plant Physiol. 92:615–621, 1990.
  • Ma, Y., Stewart, D. C., Eglinton, J. K., Logue, S. J., Langridge, P., and Evans, D. E. Comparative enzyme kinetics of two allelic forms of barley (Hordeum vulgare L.) beta-amylase. J. Cereal Sci. 31:335–344, 2000.
  • Ma, Y. F., Evans, D. E., Logue, S. J., and Langridge, P. Mutations of barley β-amylase that improve substrate-binding affinity and thermostability. Mol. Genet. Genomics 266:345–352, 2001.
  • MacGregor, A. W., Morgan, J. E., and MacGregor, E. A. The action of germinated barley alpha-amylases on linear maltodextrins. Carbohydr. Res. 227:301–313, 1992.
  • MacGregor, E. A., MacGregor, A. W., Macri, L. J., and Morgan, J. E. Models for the action of alpha-amylase isozymes on linear substrates. Carbohydr. Res. 257:249–268, 1994.
  • Marchal, L. M., and Tramper, J. Hydrolytic gain during hydrolysis reactions: Implications and correction procedures. Biotechnol. Tech. 13:325–328, 1999.
  • Marchal, L. M., Jonkers, J., and Tramper, J. The use of freezing-point depression for the theoretical dextrose equivalent measurement. Starch/Stärke 48:220–224, 1996.
  • Muslin, E. H., Karpelenia, C. B., and Henson, C. A. The impact of thermostable α-glucosidase on the production of fermentable sugars during mashing. J. Am. Soc. Brew. Chem. 61:142–145, 2003.
  • Payen, A., and Persoz, J.-F. Mémoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux art industriels. Ann. Chim. Phys. 2me Série 53:73–92, 1833.
  • Radchuk, V. V., Borisjuk, L., Sreenivasulu, N., Merx, K., Mock, H. P., Rolletschek, H., Wobus, U., and Weschje, W. Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 150:190–204, 2009.
  • Santos, M. M. M., and Riis, P. Optimized McCleary method for measurement of total β-amylase in barley and its applicability. J. Inst. Brew. 102:271–275, 1996.
  • Schmitt, M. R., and Budde, A. D. Making the cut: Options for making initial evaluations of malting quality in barley. J. Am. Soc. Brew. Chem. 68:183–194, 2010.
  • Schroeder, S. W., and MacGregor, A. W. Synthesis of limit dextrinase in germinated barley kernels and aleurone tissues. J. Am. Soc. Brew. Chem. 56:32–37, 1998.
  • Schwarz, P. B., Li, Y., Barr, J., and Horsley, R. D. Effect of operational parameters on the determination of laboratory extract and associated wort quality factors. J. Am. Soc. Brew. Chem. 65:219–228, 2007.
  • Skadsen, R. W. Aleurones from a barley with low α-amylase activity become highly responsive to gibberellin when detached from the starchy endosperm. Plant Physiol. 102:195–203, 1993.
  • Sissons, M. J. Studies on the activation and release of bound limit dextrinase in malted barley. J. Am. Soc. Brew. Chem. 54:19–25, 1996.
  • Sopanen, T., and Laurière, C. Release and activity of bound β-amylase in germinating barley grain. Plant Physiol. 89:244–249, 1989.
  • Stenholm, K., and Home, S. A new approach to limit dextrinase and its role in mashing. J. Inst. Brew. 105:205–210, 1999.
  • Sun, Z., and Henson, C. A. Degradation of native starch granules by barley α-glucosidases. Plant Physiol. 94:320–327, 1990.
  • Sun, Z., and Henson, C. A. A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch. Biochem. Biophys. 284:298–305, 1991.
  • Sun, Z., Duke, S. H., and Henson, C. A. The role of pea chloroplast α-glucosidase in transitory starch degradation. Plant Physiol. 108:211–217, 1995.
  • Vinje, M. A., Duke, S. H., and Henson, C. A. Utilization of different Bmy1 Intron III alleles for predicting β-amylase activity and thermostability in wild and cultivated barley. Plant Mol. Biol. Rep. 28:491–501, 2010.
  • Vinje, M. A., Willis, D. K., Duke, S. H., and Henson, C. A. Differential RNA expression of Bmy1 during barley seed development and the association with β-amylase accumulation, activity, and total protein. Plant Physiol. Biochem. 49:39–45, 2011.
  • Vinje, M. A., Willis, D. K., Duke, S. H., and Henson, C. A. Differential expression of two β-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain. Planta 233:1001–1010, 2011.
  • Yamasaki, Y. β-Amylase in germinating millet. Phytochemistry 64:935–939, 2003.
  • Yoshigi, N., Okada, Y., Sahara, H., and Koshino, S. Expression in Escherichia coli of cDNA encoding barley β-amylase and properties of recombinant β-amylase. Biosci. Biotechnol. Biochem. 58:1080–1086, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.