222
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of Diastatic Power Enzyme Release and Persistence during Modified Institute of Brewing 65°C and Congress Programmed Mashes

&

Literature Cited

  • Arakawa, T., and Timasheff, S. N. Stabilization of protein structure by sugars. Biochemistry 21:6536–6544, 1982.
  • Back, J. F., Oakenfull, D., and Smith, M. B. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18:5191–5196, 1979.
  • Baks, T., Janssen, A. E. M., and Boom, R. M. A kinetic model to explain the maximum in α-amylase activity measurements in the presence of small carbohydrates. Biotechnol. Bioeng. 94:431–440, 2006.
  • Baks, T., Janssen, A. E. M., and Boom, R. M. The effect of carbohydrates on α-amylase activity measurements. Enzyme Microb. Technol. 39:114–119, 2006.
  • Bamforth, C. W., Barley and malt starch in brewing: A general review. Tech. Q. Master Brew. Assoc. Am. 40:89–97, 2003.
  • Bathgate, G. N., and Bringhurst, T. A. Letter to the editor: Update on the knowledge regarding starch structure and degradation of malt enzymes (DP/DU and limit dextrinase). J. Inst. Brew. 117:33–38, 2011.
  • Bekkers, A., Vissenaekens, J., and Baks, T. Attenuation limit of malt as a function of gelatinisation characteristics of starch. In: Eur. Brew. Conv. Cong. Proc., Venice, presentation 19, 2007.
  • Bendelow, V. M. Inheritance of free β-amylase in barley. Can. J. Plant Sci. 44:550–554, 1964.
  • Bertoft, B., Andtfolk, C., and Kulp, S.-E. Effect of pH, temperature, and calcium ions on barley malt α-amylase isoenzymes. J. Inst. Brew. 90:298–302, 1984.
  • Brandam, C., Meyer, X. M., Proth, J., Strehaiano, P., and Pingaud, H. An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem. Eng. J. 13:43–52, 2003.
  • Briggs, D. E., Boulton, C. A., Brookes, P. A., and Stevens, R. Brewing: Science and Practice. CRC Press, Boca Raton, FL, 2004.
  • Chu, S., Hasjim J., Hickey, L., Fox, G., and Gilbert, B. Structural changes of starch molecules during germination in barley grains. Cereal Chem. 91:431–437, 2014.
  • Cooper, C., Evans, D. E., Yousif, A., Metz, N., and Koutoulis, A. Comparison of the impact on performance of small-scale mashing with different proportions of unmalted barley, Ondea Pro®, malt and rice. J. Inst. Brew. 122:218–227, 2016.
  • Duke, S. H., and Henson, C. A. A comparison of barley malt proteomic enzyme activities as indicators of malt sugar concentrations. J. Am. Soc. Brew. Chem. 67:99–111, 2009.
  • Eglinton, J. K., Langridge, P., and Evans, D. E. Thermostability variation in alleles of barley beta-amylase. J. Cereal Sci. 28:301–309, 1998.
  • European Brewery Convention. Analytica–EBC. Verlag Hans Carl, Nurnberg, Germany, 1998.
  • Evans, D. E. A more cost- and labor-efficient assay for the combined measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase. J. Am. Soc. Brew. Chem. 66:215–222, 2008.
  • Evans, D. E. The impact of malt blending on lautering efficiency, extract yield, and wort fermentability. J. Am. Soc. Brew. Chem. 70:50–54, 2012.
  • Evans, D. E., Collins, H. M., Eglinton, J. K., and Wilhelmson, A. Assessing the impact of the level of diastatic power enzymes and their thermostability on the hydrolysis of starch during wort production to predict malt fermentability. J. Am. Soc. Brew. Chem. 63:185–198, 2005.
  • Evans, D. E., Dambergs, R., Ratkowsky, D., Li, C., Harasymow, S., Roumeliotis, S., and Eglinton, J. K. Refining the prediction of potential malt fermentability by including an assessment of limit dextrinase thermostability and additional measures of malt modification, using two different methods for multivariate model development. J. Inst. Brew. 116:86–97, 2010.
  • Evans, D. E., Goldsmith, M., Dambergs, R., and Nischwitz, R. A comprehensive revaluation of the small-scale Congress mash protocol parameters for determination of extract and fermentability. J. Am. Soc. Brew. Chem. 69:13–27, 2011.
  • Evans, D. E., Goldsmith, M., Redd, K. S., Nischwitz, R., and Lentini, A. Impact of mashing conditions on extract, its fermentability, and the levels of wort free amino nitrogen (FAN), β-glucan, and lipids. J. Am. Soc. Brew. Chem. 70:39–49, 2012.
  • Evans, D. E., Li, C., and Eglinton, J. K. A superior prediction of malt attenuation. In: Eur. Brew. Conv. Cong. Proc., Venice, presentation 4, 2007.
  • Evans, D. E., Li, C., and Eglinton, J. K. The properties and genetics of barley malt starch degrading enzymes. In: Genetics and Improvement of Barley Malting Quality. G. Zhang and C. Li, eds. Springer, New York, NY, pp. 143–189, 2009.
  • Evans, D. E., Li, C., and Eglinton, J. K. Improved prediction of malt fermentability by measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase: I. Survey of the levels of diastatic power enzymes in commercial malts. J. Am. Soc. Brew. Chem. 66:223–232, 2008.
  • Evans, D. E., Li, C., Harasymow, S., Roumeliotis, S., and Eglinton, J. K. Improved prediction of malt fermentability by measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase: II. Impact of barley genetics, growing environment, and gibberellin on levels of α-amylase and limit dextrinase in malt. J. Am. Soc. Brew. Chem. 67:14–22, 2009.
  • Evans, D. E., Redd, K., Harysamow, S., Elvig, N., and Koutoulis, A. Small scale comparison of the influence of malt quality on malt brewing with barley quality on barley brewing using Ondea Pro. J. Am. Soc. Brew. Chem. 72:192–207, 2014.
  • Evans, D. E., van Wegen, B., Ma, Y., and Eglinton, J. K., The impact of the thermostability of α-amylase, β-amylase, and limit dextrinase on potential wort fermentability. J. Am. Soc. Brew. Chem. 61:210–218, 2003.
  • Evans, D. E., Wallace, W., Lance, R. C. M., and MacLeod, L. C. Measurement of beta-amylase in malting barley (Hordeum vulgare L.). Part 2: The effect of germination and kilning on beta-amylase. J. Cereal Sci. 26:241–250, 1997.
  • Fox, G. P., Visser, J., Skov, T., Meijering, I., and Manley, M. Effect of different analysis conditions of a rapid visco analyser malt visco-grams in relation to malt of varying fermentability. J. Inst. Brew. 120:183–192, 2014.
  • Frigon, R. P., and Lee, J. C. The stabilization of calf-brain microtubule protein by sucrose. Arch. Biochem. Biophys. 153:587–589, 1972.
  • Gastl, M., Knofel, T., and Becker, T. Conversion of isothermal 65°C mash—Measurement of quality characteristics. Brauwelt 154:274–276, 2014.
  • Gous, P., and Fox, G. P. Amylopectin synthesis and hydrolysis—Understanding isoamylase and limit dextrinase in barley (Hordeum vulgare) quality. Trends Food Sci. Technol. 62:23–32, 2017.
  • Hamilton, D. M., and Lewis, M. J. Factors affecting wort extract and attenuation. Tech. Q. Master Brew. Assoc. Am. 11:31–34, 1974.
  • Henson, C. A., and Duke, S. H. Osmolyte concentrations as an indicator of malt quality. J. Am. Soc. Brew. Chem. 65:59–62, 2007.
  • Henson, C. A., and Duke, S. H. A comparison of standard and non-standard measures of malt quality. J. Am. Soc. Brew. Chem. 66:11–19, 2008.
  • Henson, C. A., and Duke, S. H. Maltose effects on barley malt diastatic power enzyme activity and thermostability at high isothermal mashing temperatures: I. β-Amylase. J. Am. Soc. Brew. Chem. 74:100–112, 2016.
  • Hu, S., Yu, J., Dong, J., Evans, D. E., Liu, J., Huang, S., Huang, S., Fan, W., Yin, H., and Li, M. Relationship between levels of diastatic power enzymes and wort sugar production from different barley cultivars during the commercial mashing process of brewing. Starch 66:615–623, 2014.
  • Huang, Y., Cai, S., Ye, L., Han, Y., Wu, D., Dai, F., Li, C., and Zhang, G. Genetic architecture of limit dextrinase inhibitor (LDI) activity in Tibetan wild barley. BMC Plant Biol. 14:117–125, 2014.
  • Huang, Y. Q., Cai, S. G., and Zhang, G. P. The relationship of limit dextrinase, limit dextrinase inhibitor and malt quality parameters in barley and their genetic analysis. J. Cereal Sci. 70:140–145, 2016.
  • Jin, X., Cai, S. G., Ye, L., Chen, Z., Zhou, M., and Zhang, G. P. Association of HvLDI with limit dextrinase activity and malt quality in barley. Biotechnol. Lett. 35:639–645, 2013.
  • Jones, B. L. Endo-proteinases of barley and malt. J. Cereal Sci. 42:139–56, 2005.
  • Jones, B. L., and Budde, A. D. How various malt endoproteinase classes affect wort soluble protein levels. J. Cereal Sci. 41:95–106, 2005.
  • Kadziola, A., Abe, J. I., Svensson, B., and Haser, R. Crystal and molecular structure of barley alpha-amylase. J. Mol. Biol. 239:104–121, 1994.
  • Kihara, M., Kaneko, T., and Ito, K. Genetic variation of β-amylase thermostability among varieties of barley, Hordeum vulgare L., and relation to malting quality. Plant Breed. 117:425–428, 1998.
  • Koljonen, T., Hamalainen, J. J., Sojholm, K., Kettunen, A., and Pietila, K. Stimulation of the degradation of starch and β-glucans during mashing. In: Eur. Brew. Conv. Cong. Proc., Oslo, pp. 525–532, 1993.
  • Koljonen, T., Hamalainen, J. J., Sojholm, K., Kettunen, A., and Pietila, K. A model for the prediction of fermentable sugar concentrations during mashing. J. Food Eng. 26:329–350, 1995.
  • Kuhbeck, F., Back, W., and Krottenthaler, M. Influence of lauter turbidity on composition, fermentation performance and beer quality—A review. J. Inst. Brew. 112:215–221, 2006.
  • Kuhbeck, F., Back, W., and Krottenthaler, M. Influence of lauter turbidity on wort composition, fermentation, performance and beer quality in large-scale trials. J. Inst. Brew. 112:222–231, 2006.
  • Kuhbeck, F., Schutz, M., Thiele, F., Krottenthaler, M., and Back, W. Influence of lauter turbidity and hot trub on wort composition, fermentation, and beer quality. J. Am. Soc. Brew. Chem. 64:16–28, 2006.
  • Kunze, W. Technology Brewing and Malting. VLB, Berlin, Germany, 1999.
  • Langstaff, S. A., and Lewis, M. J. The mouthfeel of beer—A review. J. Inst. Brew. 99:31–37, 1993.
  • Lee, W. J., and Pyler, R. E. Barley malt limit dextrinase: Varietal, environmental and malting effects. J. Am. Soc. Brew. Chem. 42:11–17, 1984.
  • Lentini, A., Goldsmith, M., Tsolis, A., Rogers, P., Hawthorne, D., and Karanagh, T. The effect of mashing conditions using various Australian malting varieties and their impact on wort limit gravities and concentration of linoleic acid in wort. In: Proc. Inst. Brew. Conv., Singapore, pp. 184–185, 2000.
  • Longstaff, M. A., and Bryce, J. H. Development of limit dextrinase in germinated barley (Hordeum vulgare L.). Plant Physiol. 101:881–889, 1993.
  • Ma, Y., Stewart, D. C., Eglinton, J. K., Logue, S. J., Langridge, P., and Evans, D. E. Comparative enzyme kinetics of two allelic forms of barley (Hordeum vulgare L.) beta-amylase. J. Cereal Sci. 31:335–344, 2000.
  • Ma, Y. F., Eglinton, J. K., Evans, D. E., Logue, S. J., and Langridge, P. Removal of the four C-terminal glycine rich repeats enhances the thermostability of barley β-amylase. Biochemistry 39:13350–13355, 2000.
  • Ma, Y. F., Langridge, P. Logue, S. J., and Evans, D. E. The amino acid substitutions of barley β-amylase allelic forms that improve thermostability and substrate-binding affinity. Mol. Gen. Genet. 266:345–352, 2001.
  • MacGregor, A. W., Bazin, S. L., and Izydorczyk, M. S. Gelatinization characteristics and enzyme susceptibility of different types of barley starch in the temperature range 48–75 °C. J. Inst. Brew. 108:43–47, 2002.
  • MacGregor, A. W., Bazin, S. L., and Schroeder, S. W. Effect of starch hydrolysis products on the determination of limit dextrinase and limit dextrinase inhibitors in barley and malt. J. Cereal Sci. 35:17–28, 2002.
  • MacGregor, A. W., Bazin, S. L., Macri, L. J., and Babb, J. C. Modelling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. J. Cereal Sci. 29:161–169, 1999.
  • MacGregor, A. W., Macri, L. J., Schroeder, S. W., and Bazin, S. L. Limit dextrinase from malted barley: Extraction, purification and characterization. Cereal Chem. 71:610–617, 1994.
  • MacGregor, A. W., Marchylo, B. A., and Kruger, J. E. Multiple α-amylase components in germinated cereal grains determined by isoelectric focusing and chromatofocusing. Cereal Chem. 65:326–333, 1988.
  • Mangan, D., McCleary, B. V., Cornaggia, C., Ivory, R., Rooney, E., and McKie, V. Colorimetic and fluorometric assay of limit dextrinase. J. Cereal Sci. 62:50–57, 2015.
  • McCafferty, C. A., Perch-Nielsen, N., and Bryce, J. H. Effects of aerobic and anaerobic germination on the debranching enzyme, limit dextrinase, in barley malt. J. Am. Soc. Brew. Chem. 58:47–50, 2000.
  • McCleary, B. V. Measurement of the content of limit-dextrinase in cereal flours. Carbohydr. Res. 227:257–268, 1992.
  • McCleary, B. V., and Codd, R. Measurement of β-amylase in cereal flours and commercial enzyme preparations. J. Cereal Sci. 9:17–33, 1989.
  • McCleary, B. V., and Sheehan, H. Measurement of cereal α-amylase: A new assay procedure. J. Cereal Sci., 6:237–251, 1987.
  • McCleary, B. V., Mangan, D., McKie, V., Cornaggia, C., Ivory, R., and Rooney, E. Colourimetric and fluorometric substrates for measurement of pullulanase activity. Carbohydr. Res. 393:60–69, 2014.
  • Moll, M., Flayeux, R., Lipus, G., and Marc, A. Biochemistry of mashing. Tech. Q. Master Brew. Assoc. Am. 18:166–173, 1981.
  • Moonjai, N., Verstrepen, K. J., Shen, H.-Y., Derdelinckx, H., Verachtert, H., and Delvaux, F. R. Uptake of linoleic acid by croppedbrewers' yeast and its incorporation into cellular lipid fractions. J. Am. Soc. Brew. Chem. 61:161–168, 2003.
  • Munck, L., Mundy, J., and Vaag, P. Characterization of enzyme inhibitors in barley and their tentative role in malting and brewing. J. Am. Soc. Brew. Chem. 43:35–38, 1985.
  • Muslin, E. H., Karpelenia, C. B., and Henson, C. A. The impact of thermostable α-glucosidase on the production of fermentable sugars during mashing. J. Am. Soc. Brew. Chem. 61:142–145, 2003.
  • Piendl, A. Malt modification and mashing conditions as influencing factors on the carbohydrates of wort. Brew. Dig. 48:58–84, 1973.
  • Ragot, F., Guinard, J. X., Shoemaker, C. F., and Lewis, M. J. The contribution of dextrins to beer sensory properties. Part I. Mouthfeel. J. Inst. Brew. 95:427–430, 1989.
  • Rubsam, H., Gastl, M., and Becker, T. Influence of a range of molecular weight distribution of beer components on the intensity of palate fullness. Eur. Food Res. Technol. 236:65–75, 2013.
  • Sallans, H. R., and Anderson, J. A. Varietal differences in barley and malts. X. Correlations of carbohydrates with nitrogen fractions and with malt extract, steeping time and malting loss. Can. J. Res. 18:219–229, 1940.
  • Sandegren, E., and Klang, N. On barley amylase and proteinase. J. Inst. Brew. 56:313–318, 1950.
  • Sidenius, U., Olsen, K., Svensson, B., and Christensen, V. BASI-amylase complex occurs in a two step reaction. FEBS Lett. 361:250–254, 1995.
  • Sissons, M. J. Studies on the activation and release of bound limit dextrinase in malted barley. J. Am. Soc. Brew. Chem. 54:19–25, 1996.
  • Sissons, M. J., Lance, R. C. M., and Wallace, W. Bound and free forms of barley limit dextrinase. Cereal Chem. 71:520–521, 1994.
  • Sissons, M. J., Taylor, M., and Proudlove, M. Barley malt limit dextrinase: Its extraction, heat stability and activity during malting and mashing. J. Am. Soc. Brew. Chem. 53:105–110, 1995.
  • Sjöholm, K., Macri, L. J., and MacGregor, A. W. Is there a role for limit dextrinase in mashing? In: Eur. Brew. Conv. Cong. Proc., Brussels, pp. 277–284, 1995.
  • Stenholm, K., and Home, S. A new approach to limit dextrinase and its role in mashing. J. Inst. Brew. 105:205–210, 1999.
  • Stenholm, K., Home, S., Pietila, K., Jaakkola, N., and Leino, E. Are the days of congress mashing over? In: Proc. Barley Malt Wort Symp., Inst. Brew. (Central & South African Section), Zimbabwe, pp. 149–163, 1996.
  • Stenholm, K., Home, S., Pietila, K., Macri, L. J., and MacGregor, A. W. Starch hydrolysis in mashing. In: Proc. Inst. Brew Conv. (Asia/Pacific), Singapore, pp. 142–145, 1996.
  • Stenholm, K., Home, S., Pietila, K., Macri, L. J., and MacGregor, A. W. Starch hydrolysis in mashing. In: Eur. Brew. Conv. Cong. Proc., Maastricht, pp. 142–145, 1997.
  • Stenholm, K., Wilhelmson, A., and Home, S. Starch gelatinization temperature as a malt quality characteristic. In: Proc. Aviemore Conf. Malt., Brew. Distill. Institute of Brewing, London, U.K., pp. 242–245, 1998.
  • Stewart, G. G., Yonesawa, T., and Martin, S. A. Influence of mashing conditions on fermentation characteristics of all-malt wort used to produce beer or whiskey. Tech. Q. Master Brew. Assoc. Am. 44:256–263, 2007.
  • Verstrepen, K. J., Derdelinckx, G., Winderickx, J., Thevelein, J. M., Pretorius, I. S., and Delvaux, F. R. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96:110–118, 2003.
  • Wang, X. L., Zhang, X. L., Cai, S. G., Ye, L. Z., Zhou, M. X. Chen, Z. H., Zhang, G. P., and Dai, F. Genetic diversity and QTL mapping of thermostability of limit dextrinase in barley. J. Agric. Food Chem. 63:3778–3783, 2015.
  • Yang, X., Westcott, S., Evans, D. E., Zhang, X.-Q., Lance, R. C. M., and Li, C. Alleles of limit dextrinase gene associated with the enzyme thermostability in barley. Mol. Breed. 23:61–64, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.