297
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Acetic Acid and Lactic Acid Inhibition of Growth of Saccharomyces Cerevisiae by Different Mechanisms

Inhibición del crecimiento de Saccharomyces cerevisiae por el ácido acético y el ácido láctico a través de mecanismos diferentes

, &
Pages 187-194 | Received 26 Dec 2000, Accepted 02 May 2001, Published online: 01 Feb 2018

Literature Cited

  • Booth, I. R., and Kroll, R. G. The preservation of foods by low pH. Pages 119–160 in: Mechanisms of Action of Food Preservation Procedures. G. W. Gould, ed. Elsevier, London, 1989.
  • Bracey, D., Holyoak, C. D., and Coote, P. J. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: Is growth inhibition dependent on reduced intracellular pH? J. Appl. Microbiol. 85:1056–1066, 1998.
  • Cartwright, C. P., Juorszek, J. R., Beavan, M. J., Ruby, F. M. S., DeMorais, S. M. F., and Rose, A. H. Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. J. Gen. Microbiol. 132:369–377, 1986.
  • Cole, M. B., and Keenan, M. H. J. Effects of weak acids and external pH on the intracellular pH of Zygosaccharomyces bailii, and its implications in weak-acid resistance. Yeast 3:23–32, 1987.
  • Doores, S. Organic acids. Pages 75–108 in: Antimicrobials in Foods. A. L. Branen and P. M. Davidson, eds. Marcel Dekker, Inc., New York, 1983.
  • Eddy, A. A. Mechanisms of solute transport in selected eukaryotic microorganisms. Adv. Microb. Physiol. 23:1–78, 1982.
  • Eklund, T. The effect of sorbic acid and esters of para-hydroxybenzoic acid on the proton motive force in Escherichia coli membrane vesicles. J. Gen. Microbiol. 131:73–76, 1985.
  • Eklund, T. Organic acids and esters. Pages 161–200 in: Mechanisms of Action of Food Preservation Procedures. G. W. Gould, ed. Elsevier, London, 1989.
  • Fernandes, L., Côrte-Real, M., and Leão, C. A peculiar behaviour of cell death induced by weak carboxylic acids in the wine spoilage yeast Zygosaccharomyces bailii. Lett. Appl. Microbiol. 28:345–349, 1999.
  • Freese, E., Sheu, C. W., and Galliers, E. Function of lipophilic acids as antimicrobial food additives. Nature 241:321–325, 1973.
  • Gennis, R. B. Membrane dynamics and protein-lipid interactions. Pages 166–198 in: Biomembranes: Molecular Structure and Function. R. Charles, ed. Springer-Verlag, New York, 1989.
  • Holyoak, C. D., Stratford, M., McMullin, Z., Cole, M. B., Crimmins, K., Brown, A. J. P., and Coote, P. J. Activity of plasma membrane H+-ATPase and optimum glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl. Environ. Microbiol. 62:3158–3164, 1996.
  • Imai, T., and Ohno, T. Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J. Biotechnol. 38:165–172, 1995.
  • Imai, T., Nakajima, I., and Ohno, T. Development of a new method for evaluation of yeast vitality by measuring intracellular pH. J. Am. Soc. Brew. Chem. 52:5–8, 1994.
  • Kemp, P., White, R. W., and Landler, D. J. The hydrogenation of unsaturated fatty acids by five bacterial isolates from sheep rumen, including a new species. J. Gen. Microbiol. 90:100–114, 1975.
  • Krebs, H. A., Wiggins, D., Stubbs, M., Sols, A., and Bedoya, F. Studies on the mechanism of antifungal action of benzoate. Biochem. J. 214:657–663, 1983.
  • Madshus, I. H. Regulation of intracellular pH in eukaryotic cells. Biochem. J. 250:1–8, 1988.
  • Maiorella, B., Blanch, H. W., and Wilke, C. R. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotech. Bioeng. 25:103–121, 1983.
  • Moon, N. J. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Bacteriol. 55:453–460, 1983.
  • Narendranath, N. V., Thomas, K. C., and Ingledew, W. M. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26:1–7, 2001.
  • Neal, A. L., Weinstock, J. O., and Lampen, J. O. Mechanisms of fatty acid toxicity for yeast. J. Bacteriol. 90:126–131, 1965.
  • O'Hara, G. W., Goss, T. J., Dilworth, M. J., and Glenn, A. R. Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl. Environ. Microbiol. 55:1870–1876, 1989.
  • Pampulha, M. E., and Loureiro-Dias, M. C. Activity of glycolytic enzymes of S. cerevisiae in the presence of acetic acid. Appl. Microbiol. Biotechnol. 34:375–380, 1990.
  • Pampulha, M. E., and Loureiro-Dias, M. C. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 184:69–72, 2000.
  • Ramos, S. M., Balbin, M., Raposo, E., and Pardo, L. A. The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae. J. Gen. Microbiol. 135:2413–2422, 1989.
  • Rosa, M. F., and Sa-Correia, I. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 57:830–835, 1991.
  • Salmond, C. V., Kroll, R. G., and Booth, I. R. The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol. 130:2845–2850, 1984.
  • Serrano, R. In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett. 156:11–14, 1983.
  • Serrano, R. Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Curr. Top. Cell. Regul. 23:87–126, 1984.
  • Serrano, R., Keilland-Brandt, M. C., and Fink, G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ & K+) and Ca+ ATPases. Nature 319:689–693, 1986.
  • Serrano, R., Montessinos, C., and Sanchez, J. Lipid requirements of the plasma membrane ATPases from oat roots and yeast. Plant Sci. 56:117–122, 1988.
  • Stratford, M., and Anslow, P. A. Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett. Appl. Microbiol. 27:203–206, 1998.
  • Thomas, S., Hossack, J. A., and Rose, A. H. Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch. Microbiol. 117:239–245, 1978.
  • van der Rest, M. E., Kamminga, A. H., Nakano, A., Anraku, Y., Poolman, B., and Konings, W. N. The plasma membrane of Saccharomyces cerevisiae: Structure, function and biogenesis. Microbiol. Rev. 59:304–322, 1995.
  • Verduyn, C., Postma, E., Scheffers, W. A., and Van Dijken, J. P. Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517, 1992.
  • Viegas, C. A., and Sa-Correia, I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J. Gen. Microbiol. 137:645–651, 1991.
  • Warth, A. D. Mechanism of resistance of Saccharomyces bailii to benzoic acid on growth yield of yeasts differing in their resistance to preservatives. J. Appl. Bacteriol. 43:215–230, 1977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.