168
Views
27
CrossRef citations to date
0
Altmetric
Reviews

The Impact of Microorganisms on Barley and Malt Quality—A Review

El Impacto de Microorganismos en la Calidad de Cebada y Malta—Un Repaso

, , &
Pages 69-78 | Received 25 Aug 2005, Accepted 01 Oct 2005, Published online: 01 Feb 2018

Literature Cited

  • Ackermann, A. Mycoflora of South African barley and malt. J. Am. Soc. Brew. Chem. 56:169–176, 1998.
  • Agizzio, A. P., Carvalho, A. O., de Fátima, S., Ribeiro, F., Machado, O. L. T., Alves, E. W., Okorokov, L. A., Samarão, S. S., Bloch Jr., C., Prates, M. V., and Gomes, V. M. A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of medium by Fusarium oxysporum. Arch. Biochem. Biophys. 416:188–195, 2003.
  • Amaha, M., Kitabatake, K., Nakagawa, A., Yoshida, J., and Harada, T. Gushing inducers produced by some mould strains. Proc. Congr. Eur. Brew. Conv. 14:381–398, 1973.
  • Anderson, K., Gjertsen, P., and Trolle, B. The microflora of barley and its effect on wort and beer. Brew. Dig. 42(8):76–81, 1967.
  • Arondel, V., and Kader, J. C. Lipid transfer in plants. Experimentia 46:576–585, 1991.
  • Axcell, B. C., Tulej, R., and Mulder, C. J. The influence of the malting process on malt fermentability performance. Proc. Conv. Inst. Brew. Aust. N.Z. Sect. 63–69, 1986.
  • Axcell, B., Van Nierop, S., and Vundla, W. Malt induced premature yeast flocculation. Tech. Q. Master Brew. Assoc. Am. 37:501–504, 2000.
  • Batalia, M. A., Monzingo, A. F., Ernst, S., Roberts, W., Robertus, J., The crystal structure of the antifungal protein zematin. Nat. Struct. Biol. 3:19–23, 1996.
  • Beck, R., Lepschy, J., Steinke, S., and Suss, A. (1991) Investigations into the microbiology of malting barley and wheat. Part 1: The composition of the microflora on freshly harvested grain. Brauwelt 131:2472, 2474–2479.
  • Bloch, C., and Richardson, M. A new family of small (5 kDa) protein inhibitors in insect α-amylases from seeds of sorghum (Sorghum bicolor (L) Moench) have sequence homologies with wheat γ-purothionins. FEBS (Fed. Eur. Brew. Soc.) Lett. 279:101–104, 1991.
  • Blochet, J. E., Chevalier, C., Forest, E., Pebay-Peyroula, E., Gautier, M. F., Joudrier, P., Pezolet, M., and Marion, D. Complete amino acid sequence of puroindoline, a new basic and cysteine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS (Fed. Eur. Brew. Soc.) Lett. 329:336–340, 1993.
  • Bohlmann, H., and Apel, K. Isolation and characterisation of cDNAs coding leaf-specific thionins closely related to the endosperm-specific hordothionin in barley (Hordeum vulgare L.) Mol. Gen. Genet. 207:446–454, 1987.
  • Boivin, P., and Malanda, M. Improvement of malt quality and safety by adding starter culture during the malting process. Tech. Q. Master Brew. Assoc. Am. 34:96–101, 1997.
  • Bol, J., Klopper, W. J., Vermeire, H. A., and Motshagen, M. E. Relation between the microflora of barley and malt quality. Proc. Congr. Eur. Brew. Conv. 20:643–650, 1985.
  • Boller, T. Mechanisms of Plant Defence Responses. B. Fritig, and M. Legrand, Eds. Kluwer Academic Publishers, Dordrecht, the Netherlands. Pp. 391–400, 1993.
  • Booysens, C., Dicks, L. T. M., Meijering, I., and Achermann, A. Isolation, identification and changes in the composition of lactic acid bacteria during the malting of two different barley cultivars. Int. J. Food Microbiol. 76:63–73 2002.
  • Bouillon, P., Drischel, C., Vergnolle, C., Duranton, H., and Kader, J. C. The primary structure of spinach-leaf phospholipid-transfer protein. Eur. J. Biochem. 166:387–391, 1987.
  • Briggs, D. E. Weeds, pests and diseases in the growing crop. In: Barley. Chapman and Hall, London. Pp. 399–404, 1978.
  • Briggs, D. E., Hough, J. S., Stevens, R., and Young, T. W. Barley and the biochemistry of malting grain. In: Malting and Brewing Science, Malt and Sweet Wort. Chapman and Hall, London. 2nd Ed. Vol. 1, pp. 19–21, 58–75, 1981.
  • Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., Desamblanx, G. W., and Osborn, R. W. Antimicrobial peptides in plants. Crit. Rev. Plant Sci. 16:297–323, 1997.
  • Broekaert, W. F., Cammue, B. P. A., and Osborn, R. W. Plant defensins: Novel antimicrobial peptides as components of the host defence system. Plant Physiol. 108, 1353–1358, 1995.
  • Broekaert, W. F., Cammue, B. P. A., Osborn, R. W., and Rees, S. B. Biocidal chitin binding proteins. International Patent Application WO94/11511, 1994.
  • Broekaert, W. F., Mariën, W., Terras, F. R. G., De Bolle, M. F. C., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S. B., Vanderleyden, J., and Cammue, B. P. A. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cystein/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308–4314, 1992.
  • Bruix, M., Jimenez, M. A., Santoro, J., Gonzalez, C., Colilla, F. J., Mendez, E., and Rico, M. Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: Structural motif common to toxic arthropod proteins. Biochemistry 19:32, 715–724, 1993.
  • Cammue, B. P. A., De Bolle, M. F. C., Terras, F. R. G., Proost, P., Van Damme, J., Rees, S. B., Vanderleyden, J., and Broekaert, W. F. Isolation and characterisation of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol. Chem. 267:2228–2233, 1992.
  • Cammue, B. P. A., Thevissen, K., Hendricks, M., Eggermont, K., Goderis, I. J., Proost, P., Van Damme, J., Osborn, R. W., Guerbette, F., Kader, J. C., and Broekaert, W. F. A potent antimicrobial protein from onion (Allium cepa L.) seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 109:445–455, 1995.
  • Campas, F. A. P., and Richardson, M. The complete amino acid sequence of the bifunctional α-amylase/trypsin inhibitor from seeds of ragi (Indian finger millet: Eleusine coracana Goertn.) FEBS (Fed. Eur. Brew. Soc.) Lett. 152:300–304, 1984.
  • Carr, J. P., and Klessig, D. F. The pathogenesis-related proteins in plants. In: Genetic Engineering, Principles and Methods. J. K. Setlow, Ed. Plenum Press, New York. Vol. 11, pp. 65–109, 1989.
  • Casey, G. Primary versus secondary gushing and assay procedures used to assess malt/beer gushing potential. Tech. Q. Master Brew. Assoc. Am. 33:229–235, 1996.
  • Castagnero, A., Marana, C., Carbonero, P., and García-Olmedo, F. Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J. Mol. Biol. 224:1003–1009, 1992.
  • Chagolla-Lopez, A., Blanco-Labra, A., Patthy, A., Sanchez, R., and Ponger, S. A novel α-amylase inhibitor from amaranth (Amaranthus hypocondriacus) seeds. J. Biol. Chem. 269:23675–23680, 1994.
  • Colilla, F. J., Rocher, A., and Mendez, E. γ-Purothionins: Amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS (Fed. Eur. Brew. Soc.) Lett. 270:191–194, 1990.
  • Creelman, R. A., and Mullet, J. E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381, 1997.
  • Cvetković, A., Blagojević, S., and Hranisavljević, J. Effects of pathogen-related proteins from barley grain on brewers yeast. J. Inst. Brew. 103:183–186, 1997.
  • Désormeaux, A., Blochet, J. E., Pézolet, M., and Mario, D. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in stabilisation of alpha-helix structure. Biochim. Biophys. Acta 1121:137–152, 1992.
  • Douglas, P. E., and Flannigan, B. A microbiological evaluation of barley malt production. J. Inst. Brew. 94:85–88, 1988.
  • Douliez, J., Pato, C., Rabesona, H., Mollé, D., and Marion, D. Disulphide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur. J. Biochem. 268:1400–1403, 2001.
  • D'Silva, I., Poirier, G. G., and Heath, M. C. Activation of cysreine proteases in cowpea plants during the hypersensitive response—A form of cell death. Exp. Cell Res. 245:389–399, 1998.
  • Dubreil, L., Gaborit, T., Bouchet, B., Gallant, D. J., Broekaert, W. F., Quillien, L., and Marion, D. Spatial and temporal distribution of the major isoforms of puroindolins (puroindoline-a and puroindoline-b) and non specific lipid transfer protein (ns-LTP1e1) of Triticum aestivum seeds. Relationship with their in vitro antifungal properties. Plant Sci. 138:121–135, 1998.
  • Dufait, A., and Coppens, T. Starter culture during malting: From spore to final beer. Cerevisia Belg. J. Brew. Biotechnol. 29:34–52, 2004.
  • Etchevers, G. C., Banasi, O. J., and Watson, C. A. Microflora of barley and its effects on malt and beer properties: A review. Brew. Dig. 52(1):46–50, 1977.
  • Evans, D. E., Nischwitz, R., Stewart, D. C., Cole, N., and MacLeod, L. C. The influence of malt foam-positive proteins and non-starch polysaccharides on beer foam quality. Monogr. Eur. Brew. Conv. 27:114–128, 1999.
  • Evans, D. E., Ratcliffe, M., Jones, B. L., and Barr, A. R. Variations and genetic control of foam-positive proteins in Australian barley varieties. Proc. Aust. Barley Technol. Symp, 9:3.6.1–3.6.6, 1999.
  • Evans, D. E., Sheehan, M. C., and Stewart, D. C. The impact of malt derived proteins on beer foam quality. Part II. The influence of malt foam-positive proteins and non-starch polysaccharides on beer foam quality. J. Inst. Brew. 105:171–177, 1999.
  • Fischbach, H., and Rodricks, J. V. Current efforts of the food and drug administration to control mycotoxins in food. J. Assoc. Off. Anal. Chem. 56:767–770, 1973.
  • Flannigan, B. The microflora of barley and malt. In: Brewing Microbiology. F. G. Priest and I. Campbell, Eds. Chapman and Hall, London. 2nd Ed. Pp. 83–125, 1996.
  • Flannigan, B., Morton, J. G., and Naylot, R. J. Fusarium mycotoxins and malting of barley. In: Trichothecenes and other mycotoxins. J. Lacey, Ed. John Wiley and Sons, New York. Pp. 171–184, 1985.
  • Fleming, A. J., Mandel, T., Hofmann, S., de Vries, S. C., and Kuhlemeier, K. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 2:855–862, 1992.
  • Florack, D. E. A., and Stiekema, W. J. Thionins: Properties, possible biological roles and mechanisms of action. Plant. Mol. Biol. 26:25–37, 1994.
  • Florack, D. E. A., Visser, B., De Vries, P. M., Van Vuurde, J. W. L., and Stiekema, W. J. Analysis of the toxicity of purothionins and hordothionins for plant pathogenic bacteria. Neth. J. Plant Pathol. 99:259–268, 1993.
  • Fritig, B., Heitz, T., and Legrand, M. Antimicrobial proteins in induced plant defence. Curr. Opin. Immunol. 10:16–22, 1998.
  • Fujii, T., and Horie, Y. Some substances in material inducing early flocculation of yeast. II. Further investigation on a substance isolated from wort inducing early flocculation. Rep. Res. Lab. Kirin Brew. Co. Ltd. 18:75–85, 1975.
  • Fujino, S. and Yoshida, T. Premature flocculaton of yeast induced by some wort components. Rep. Res. Kirin Brew. Co. Ltd. 19:45–53, 1976.
  • García-Olmedo, F., Molina, A., Segura, A., and Morena, M. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 3:72–74, 1995.
  • García-Olmedo, F., Rodríguez-Palenzuela, Molina, A., Alamillo, J. M., López-Solanilla, E., Berrocal-Lobo, M., and Poza-Carrión, C. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS (Fed Eur. Brew. Soc.) Lett. 498:219–222, 2001.
  • Gardner, R. J. The mechanism of gushing-A review. J. Inst. Brew. 79:275–283, 1973.
  • Gausing, K. Thionin genes specifically expressed in barley leaves. Planta 171:241–246, 1987.
  • Gautier, M. F., Aleman, M. E., Guirao, A., Marion, D., and Joudrier, P. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: Cdna sequence analysis and developmental gene expression. Plant Mol. Biol. 25:43–57, 1994.
  • Gjertsen, P. Gushing in beer: It's nature, cause and prevention. Brew. Dig. 42(5):80–84, 1967.
  • Gjertsen, P., Trolle, B., and Anderson, K. Studies on gushing caused by microorganisms, specially Fusarium sp. Proc. Congr. Eur. Brew. Conv. 10:428–438, 1965.
  • Gotjanović, S., Sužnjevic, D., Beljanski, M., Ostojić, S., Gorjanović, R., Vrvić, M., and Hranisavljević, J. Effects of lipid-transfer protein from malting barley grain on brewers yeast fermentation. J. Inst. Brew. 110:297–302, 2004.
  • Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R. W., and Dangl, J. L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846, 1995.
  • Grenier, J., Potvin, C., and Asselin, A. Barley pathogenesis–related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant Physiol. 103:1277–1283, 1993.
  • Guihard, G., Bénédetti, H., Besnard, M., and Letellier, L. Phosphate efflux through channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J. Biol. Chem. 286:17775–17780, 1993.
  • Gyllang, H., Sätmark, L., and Martinson, E. The influence of some fungi on malt quality. Proc. Congr. Eur. Brew. Conv. 16:245–254, 1977.
  • Haikara, A. Gushing induced by fungi. In: Relationship Between Malt and Beer. Monogr. VI Eur. Brew. Conv. Symp. Fachverlag Hans Carl, Nürnberg, Germany. Pp. 251–258, 1980.
  • Haikara, A. Malt and beer from barley artificially contaminated with Fusarium in the field. Proc. Congr. Eur. Brew. Conv 19:401–408, 1983.
  • Haikara, A., Makinen, V., and Hakulinen, R. On the microflora of barley after harvesting, during storage and in malting. Proc. Congr. Eur. Brew. Conv. 16:35–46, 1977.
  • Hartnett, D. J., Vaughan, A., and van Sinderen, D. Antimicrobial-producing lactic acid bacteria isolated from raw barley and sorghum. J. Inst. Brew. 108:169–177, 2002.
  • Heinemann, B., Anderson, K. V., Nielsen, P. R., Bech, L. M., and Poulsen, F. M. Structure in solution of a four-helix lipid binding protein. Protein Sci. 5:13–23, 1996.
  • Hejgaard, J. Origin of dominant beer protein immunochemical identity with β-amylase-associated protein from barley. J. Inst. Brew. 83:94–96, 1977.
  • Herrera, V. E., and Axcell, B. C. Induction of premature yeast flocculation by on polysaccharide fraction isolated from malt husk. J. Inst Brew. 97:359–366, 1991.
  • Herrera, V. E., and Axcell, B. C. Studies on the binding between yeast and a malt polysaccharide that induces heavy yeast flocculation. J. Inst Brew. 97:367–373, 1991.
  • Hill, R. A., and Lacey, J. The microflora of ripening barley grain and the effects of pre-harvest fungicide application. Ann. Appl. Biol. 102:455–465, 1983.
  • Hippeli, S., and Elstner, E. F. Minireview: Are hydrophobins and/or non-specific lipid transfer proteins responsible for gushing of beer? New hypothesis on the chemical nature of gushing inducing factors. Z. Naturforsch. 57:1–8, 2002.
  • Hoy, J. L., McCauley, B. J., and Fincher, B. Cellulases of plant and microbial origin n germinating barley. J. Inst. Brew. 87:77–80, 1981.
  • Hrmova, M., Banik, M., Harvey, A. J., Garrett, T. P. J., Varghese, J. N., Hoj, P. B., and Fincher, G. B. Polysaccharide hydrolases in germinated barley and their role in the depolymerisation of plant and fungal cell walls. Int. J. Biol. Macromol. 21:67–72, 1997.
  • Inagaki, H., Yamazumi, K., Uehara, H., and Mochzuki, K. Determination of fermentation behaviour-malt evaluation based on the original small scale fermentation test. In: Symposium on Malting Technology. Monogr. XXIII Eur. Brew. Conv. Symp. Fachverlag Hans Carl, Nürnberg, Germany. Pp. 110–136, 1994.
  • Jegou, S., Douliez, J.-P., Molle, D., Boivin, P., and Marion, D. Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. J. Agric. Food Chem. 49:4942–4949, 2001.
  • Jegou, S. D., Molle, D., Boivin, P., and Marion, D. Purification and characterisation of LTP polypeptide from beer. J. Agric. Food Chem. 48:5023–5029, 2000.
  • Kader, J. C. Lipid transfer proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47:627–654, 1996.
  • Kader, J. C. Lipid-transfer proteins: A puzzling family of plant proteins. Trends Plant Sci. 2:66–70, 1997.
  • Kader, J. C., Julienne, M., and Vergnolle, C. Purification and characterisation of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur. J. Biochem. 139:411–416, 1984.
  • Kanauchi, M., and Bamforth, C. W. Growth of Trichoderma viride on crude cell wall preparations from barley. J. Agric. Food. Chem. 49:883–887, 2002.
  • Kershaw, M. J., and Talbot, N. J. Hydrophobins and repellents: Proteins with fundamental roles in fungal morphogenesis. Fungal Genet. Biol. 23:18–33, 1998.
  • Kitabatake, K. A wort component responsible for gushing in beer. Bull. Brew. Sci. (Tokyo) 24:21–32, 1978.
  • Kitabatake, K., and Amaha, M. Production of gushing factor by Nigrospora sp. in liquid culture media. Bull. Brew. Sci. 20:1–8, 1974.
  • Kitabatake, K., and Amaha, M. Effects of chemical modifications on the gushing inducing activity of a hydrophobic protein produced by Nigrospora sp. Agric. Biol. Chem. 41:1011–1019, 1977.
  • Kotheimer, J. B., and Christensen, C. M. Microflora on barley kernels. Wallerstein Lab. Commun. 24:21–27, 1961.
  • Kruger, L., Ryder, D. S., Alcock, C., and Murray, J. P. Malt quality prediction of malt fermentability part I. Tech. Q. Master Brew. Assoc. Am. 19:45–51, 1982.
  • Laitila, A., Alakomi, H. L., Raaska, L., Mattila-Sandholm, T., and Haikara, A. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol. 93:566–576, 2002.
  • Lamb, C., and Dixon, R. A. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251–275, 1997.
  • Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. Biochemical and molecular characterisation of three barley seed proteins with antifungal properties. J. Biol. Chem. 266:1564–1573, 1991.
  • Le-Nguyen, D. L., Heitz, A., Chiche, L., Castro, B., Baigegrain, R., Favel, A., and Coletti-Previero, M. Molecular recognition between serine proteases and new bioactive micro-proteins with knotted structure. Biochimie 72:431–435, 1990.
  • Lindorff-Larsen, K., Lerche, M. H., Poulsen, F. M., Roepstroff, P., and Winther, J. R. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification. J. Biol. Chem. 276:33547–33553, 2001.
  • Loh, Y.-T., and Martin, G. B. The Pto bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity. Plant Physiol. 108:1735–1739, 1995.
  • Mendez, E., Moreno, A., Colilla, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., and De Haro, C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Eur. J. Biochem. 194:533–539, 1990.
  • Molina, A. and García-Olmedo, F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 4:983–991, 1993.
  • Molina, A., Goy, P. A., Fraile, A., Sanchez-Monge, R., and García-Olmedo, F. Inhibition of bacterial and fungal plant pathogens by thionins of types I and II. Plant Sci. 92:169–177, 1993.
  • Molina, A., Segura, A., and García-Olmedo, F. Lipid transfer proteins (ns-LTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS (Fed. Eur. Brew. Soc.) Lett. 316:119–122, 1993.
  • Morimoto, K., Shimazu, T., Fujii, T., and Horie, Y. Some substances in malt inducing early flocculation of yeast. I. Preliminary investigation on high molecular weight substances in malt and wort. Rep. Res. Lab. Kirin Brew. Co. Ltd. 18:63–74, 1975.
  • Morrissey, J. P., and Osbourn, A. E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63:708–724, 1999.
  • Mundy, J., and Rogers, J. C. Selective expression of a probable amylase/protease inhibitor in barley aleurone cells: Comparison to the barley amylase/subtilisin inhibitor. Planta 169:51–63, 1986.
  • Nakamura, T., Chiba, K., Asahara, Y., and Tada, S. Prediction of barley which causes premature yeast flocculation. Proc. Congr. Eur. Brew. Conv. 26:53–60, 1997.
  • Noots, I., Delcour, J. A., and Michiels, C. W. From field barley to malt: Detection and specification of microbial activity for quality aspects. Crit. Rev. Microbiol. 25:121–125, 1998.
  • Noots, I., Derycke, V., Jensen, H. E., Decour, J. A., and Coppens, T. Studies on barley starchy endosperm cell wall degradation by Rhizopus VII. J. Cereal Sci. 37:81–90, 2003.
  • Noots, I., Derycke, V., Michiels, C., Delcour, J. A., Delrue, R., and Coppens, T. Improvement of malt modification by use of Rhizopus VII as starter culture. J. Agric. Food. Chem. 49:3718–3724, 2001.
  • Okada, T., and Yoshizumi, H. A lethal toxic substance for brewery yeast in wheat and barley. Part II. Isolation and some properties of toxic principle. Agric. Biol. Chem. 34:1089–1094, 1970.
  • Okada, T. and Yoshizumi, H. The mode of action of toxic protein in wheat barley on brewery yeast Agric. Biol. Chem. 37:2289–2294, 1973.
  • Okada, T., Yoshizumi, H., and Terashima, Y. A lethal toxic substance for brewery yeast in wheat and barley. Part I. Assay of toxicity on various yeast strains. Agric. Biol. Chem. 34:1084–1088, 1970.
  • O'Mahony, A., O'Sullivan, T., Walsh, Y., Vaughan, A., Maher, M., Fitsgerald, G. F., and van Sinderen, D. Characterisation of antimicrobial producing lactic acid bacteria from malted barley. J. Inst. Brew. 106:403–410, 2000.
  • Osborn, R. W., De Samblaux, G., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS (Fed Eur. Brew. Soc.) Lett. 368:257–262, 1995.
  • O'Sullivan, T. F., Walsh, Y., O'Mahony, A., Fitzgerald, G. F., and van Sinderen, D. A comparative study of malthouse and brewhouse microflora. J. Inst. Brew. 105:55–61, 1999.
  • Pearce, R. B., and Ride, J. P. Specificity of induction of the lignification response in wounded wheat leaves. Physiol. Plant Pathol. 16:197–204, 1980.
  • Pekkarinen, A. The serine proteinases of Fusarium grown on cereal proteins and in barley grain and their inhibition by barley proteins. VVT Publ. 487:74,90, 2003.
  • Petters, H. I., Flannigan, B., and Austin, B. Quantitative and qualitative studies of the microflora of barley malt production. J. Appl. Bacteriol. 65:279–297, 1988.
  • Ponz, F., Hernandez-Lucas, C., Carbonero, P., and García-Olmedo, F. Synthesis and processing of thionin precursors in developing endosperm of barley (Hordeum vulgare L.) EMBO (Eur. Mol. Biol. Organ.) J. 2:1035–1040, 1983.
  • Ponz, F., Paz-Ares, J., Hernandez-Lucas, C., García-Olmedo, F., and Carbonero, P. Cloning nucleotide sequence of a cDNA encoding the precursor of the barley toxin α hordothionin. Eur. J. Biochem. 156:131–135, 1986.
  • Prentice, N., and Sloey, W. Studies on barley microflora of possible importance to malting and brewing quality. I. The treatment of barley during malting with selected microorganism. Proc. Am. Soc. Brew. Chem. 1960, pp. 28–34.
  • Priest, F. G., and Campell, I. The microflora of barley and malt. In: Brewing Microbiology. Elsevier Applied Science, London. Pp. 83–90, 1987.
  • Pyee, J., Yu, H., and Kolattukudy, P. E. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch. Biochem. Biophys. 311:460–468, 1994.
  • Rabie, C. J., and Lubben, A. The mycoflora of South African barley and barley malt. Proc. Conv. Inst. Brew. Central South African Sect. 4:55–73, 1993.
  • Rao, U., Stec, B., and Teeter, M. M. Refinement of purothionins reveals solute particles important for lattice formation and toxicity. I. α1-purothionin revisited. Acta Crystallogr. Sect. D. Biol. Crystallogr. 51:904–913, 1995.
  • Reinikainen, P., Peltola, P., Lampinen, R., Haikara, A., and Olkku, J. Improving the quality of malting barley by employing microbial starter cultures in the field. Proc. Congr. Eur. Brew. Conv. 27:551–558, 1999.
  • Sahl, H., and Bierbaum, G. Lanthibiotics: Biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol. 52:41–79, 1998.
  • Schwarz, P. B., Jones, B. L., and Steffenson, B. J. Enzymes associated with Fusarium infection of barley. J. Am. Soc. Brew. Chem. 60:130–134, 2002.
  • Schwarz, P. B., Casper, H. H., Barr, J., and Musial, M. Impact of Fusarium head blight on the malting and brewing quality of barley. Cereal Res. Commun. 25:813–814, 1997.
  • Schwarz, P. B., Schwarz, J. G., Zhou, A., Prom, L. K., and Steffenson, B. J. Effects of Fusarium graminearum and F. poae infection on barley and malt quality. Monatsschr. Brauwiss. 54:55–63, 2001.
  • Scofield, R. S., Tobais, C. M., Rathjen, J., Chang, J. H., Lavelle, D. T., Michelmore, R. W., and Staskawicz, B. J. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063–2065, 1996.
  • Scott, P. M. Effects of food processing on mycotoxins. J. Food Prot. 47:489–499. 1984.
  • Segura, A., Moreno, M., and García-Olmedo, F. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from leafs of Arabidopsis and spinach. FEBS (Fed Eur. Brew. Soc.) Lett. 332:243–246, 1993.
  • Singh, B., Gupta, K. G., and Gupta, G. S. Incidence of antibacterial compounds in fungi. Indian J. Exp. Biol. 10:228–231, 1971.
  • Skiver, K., Leah, R., Müller-Uri, F., Olsen, F. L., and Mundy, J. Structure and expression of barley lipid transfer protein gene LTP1. Plant Mol. Biol. 18:585–589, 1992.
  • Smit, G., Straver, M. H., Lugtenberg, J. J., and Kijne, J. W. Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl. Environ. Microbiol. 5:3709–3714, 1992.
  • Sossountzov, L., Ruiz-Avile, L., Vignols, F., Jolliot, A., Arondel, V., Tchang, F., Grosbois, M., Guerbette, F., Miginiac, E., Delseny, M., Piugdomenech, R., and Kader, J. C. Spacial and temperal expression of a maize lipid transfer protein gene. Plant Cell. 3:923–933, 1991.
  • Spicher, G. Fungi on cereals and their effect on quality with special consideration of malting barley. Monatsschr. Brauwiss. 42:68–77, 1989.
  • Stars, A. C., South, J. B., and Smith, N. A. Influence of malting microflora on malt quality. Proc. Congr. Eur. Brew. Conv. 24:103–110, 1993.
  • Stec, B., Rao, U., and Teeter, M. M. Refinement of purothionin reveals solute particles important for lattice formation toxicity of β-purothionin at 1.7Å resolution. Acta Crystallogr. Sect. D. Biol. Crystallogr. 51:914–924, 1995.
  • Steinmüller, K., Batschauer, A., and Apel, K. Tissue-specific and light-dependent changes of chromatin organisation in barley (Hordeum vulgare). Eur. J. Biochem. 158:519–525, 1986.
  • Sterk, P., Booij, H., Schellekens, G. A., Van Kammen, A., and De Vries, S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921, 1991.
  • Stratford, M. Yeast flocculation: Restructuring the theories in line with research. Cerevisiea. 21:38–45, 1992.
  • Stratford, M., and Carter, A. T. Yeast flocculation: Lectin synthesis and activation. Yeast 9:371–378, 1993.
  • Tailor, R., Acland, D. P., Attenborough, S., Cammue, B. P. A., Evans, I. J., Osborn, R. W., Ray, J., Rees, S. B., and Broekaert, W. F. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 272:24480–24487, 1997.
  • Takishima, K., Watanabe, S, Ymamda, M., and Maniya, G. The amino-acid sequence of the nonspecific lipid transfer protein from germinated caster bean endosperm. Biochim. Biophys. Acta 870:248–255, 1986.
  • Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y., and Martin, G. B. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2063–2065, 1996.
  • Terras, F. R. G., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., Kester, A., Rees, S. B., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F. Small cysteine-rich antifungal proteins from radish: Their role in host defence. Plant Cell 7:573–588, 1995.
  • Terras, F. R. G., Schoofs, H., De Bolle, M. F. C., Van Leuven, F., Rees, S. B., Vanderleyden, J., Camumue, B. P. A., and Broekaert, W. F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 267:15301–15309, 1992.
  • Terras, F. R. G., Schoofs, H. M. E., Thevissen, K., Osborn, R. W., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F. Synergistic enhancement of antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol. 103:1311–1319, 1993.
  • Terras, F. R. G., Torrekens, S., Van Leuven, F., Osborn, R. W., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F. A new family of cysteine-rich antifungal proteins from Brassicaceae species. FEBS (Fed. Eur. Brew. Soc.) Lett. 316:233–240, 1993.
  • Terras, F. R. G., Van Leuven, F., Vanderleyden, J., Cammue, B. P. A., and Broekaert, W. F. In vitro anti-fungal activity of a radish (Raphanus sativus L.) seed protein homologous to lipid transfer proteins. Plant Physiol. 100:1055–1058, 1992.
  • Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., and Broekaert, W. F. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem. 271:15018–15025, 1996.
  • Torres-Schumann, S., Godoy, J. A., and Pintor-Toro, J. A. A probable lipid transfer protein gene is induced by NaCl in stems of tomatoe plants. Plant Mol. Biol. 18:749–757, 1992.
  • Van Loon, L. C., and Van Strien, E. A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85–97, 1999.
  • Van Nierop, S. N. E. Screening of barley, malt and wort extracts for antiyeast activity. Chapter 7. In: Investigation of Malt Factors that Influence Beer Production and Quality. Ph.D. thesis. Stellenbosch University, South Africa, 2005.
  • Van Nierop, S.N.E. Partial characterisation of antimicrobial factors in barley malt. Chapter 9. In: Investigation of Malt Factors that Influence Beer Production and Quality. Ph.D. thesis. Stellenbosch University, South Africa, 2005.
  • Van Nierop, S. N. E., Cameron-Clarke, A., and Axcell, B. C. Enzymatic generation of factors from malt responsible for premature yeast flocculation. J. Am. Soc. Brew. Chem. 62:108–116, 2004.
  • Vaughan, A., Eijsink, V. G. H., O'Sullivan, T. F., O'Hanlon, K., and Sinderen, D. An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. J. Appl. Microbiol. 91:131–138, 2001.
  • Verstrepen, K. J., Derdelinckx, G., Verachtert, H., Delvaux, F. R., Yeast flocculation: What brewers should know. Appl. Microbiol. Biotechnol. 61:197–205, 2003.
  • Walujono, K., Scholma, R. A., Beitema, J. J., Mariono, A., and Hahn, A. M. Amino sequence of hevein. Proc. Int. Rubber Conf. 2:518–531, 1975.
  • Weidender, A. Untersuchungen zum malzverursachten Wildwerden (Gushing) des bieres. Dissertation an der Techishen Universität München, 1992.
  • Wessels, J. G. H. Hydrophobins: Proteins that change the nature of the fungal surface. Adv. Microb. Physiol. 38:1–45, 1997.
  • Wessels, J. G. H., de Vries, O. M. H., Asgeisdottir, S. A., and Schuren, F. H. I. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799, 1991.
  • Wolf-Hall, C. E., and Schwarz, P. B. Mycotoxins and fermentation-beer production. Adv. Exp. Med. Biol. 504, 217–226, 2002.
  • Wörsten, H. A. B., and de Vocht, M. L. Hydrophobins, the fungal coat unraveled. Biochim. Biophys. Acta 1469:79–86, 2000.
  • Yamada, M. Lipid transfer proteins in plants and microorganisms. Plant Cell Physiol. 33:1–6, 1992.
  • Yu, Y. G., Chung, C. H., Fowler, A., and Suh, S. W. Amino acid sequence of a probable amylase/protease inhibitor from rice seeds. Arch. Biochem. Biophys. 265:465–475, 1988.
  • Zhou, J., Loh, Y.-T., Bressan, R. A., and Martin, G. B. The tomatoe gene Pti1 encodes a serine/thrionine kinase that is phosphorylation by Pto and is involved in the plant hypersensitivity response. Cell 83:925–935, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.