171
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Influence of the Sugar Composition of the Added Extract on the Refermentation of Beer in Bottles

Influencia de la Composición del Azúcar del Extracto Agregado en la Refermentación de la Cerveza en Botellas

, , , &
Pages 206-213 | Received 23 Aug 2005, Accepted 18 Feb 2006, Published online: 01 Feb 2018

Literature Cited

  • Barford, J. P., Phillips, P. J., and Orlowski, J. H. A new model of uptake of multiple sugars by S. cerevisiae: Part 2. Bioprocess Eng. 7:303–307, 1992.
  • Bisson, L. F., and Fraenkel, D. G. Involvement of kinases in glucose and fructose uptake in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:1730–1734, 1983.
  • Brey, S. E., de Costa, S., Rogers, P. J., Bryce, J. H., Morris, P. C., Mitchell, W. J., and Stewart, G. G. The effect of proteinase A on foam-active polypeptides during high and low gravity fermentation. J. Inst. Brew. 109:194–202, 2003.
  • Carlson, M. Regulation of sugar utilization in Saccharomyces species. J. Bacteriol. 169:4873–4877, 1987.
  • Casson, D. T., Reid, G. C., and Gatner, E. M. S. On the differing rates of fructose and glucose utilisation in Saccharomyces cerevisiae. J. Inst. Brew. 93:23–25, 1987.
  • CBB. Sector summary for the Belgian brewery industry in 2004. Het Brouwersblad Q. Mag. Confed. Belg. Brew., June, pp. 6–20, 2005.
  • Chen, C.-H. E., Jamieson, A. M., and Van Gheluwe, G. The release of fatty acids as a consequence of yeast autolysis. J. Am. Soc. Brew. Chem. 38:13–18, 1980.
  • D'Amore, T., Russell, I., and Stewart, G. G. The effect of carbohydrate adjuncts on brewer's wort fermentation by Saccharomyces uvarum (carlsbergensis). J. Inst. Brew. 95:333–336, 1989.
  • Debs-Louka, E., Louka, N., Abraham, G., Chabot, V., and Allaf, K. Effect of compressed carbon dioxide on microbial cell viability. Appl. Environ. Microbiol. 65:626–631, 1999.
  • Diderich, J. A., Schepper, M., van Hoek, P., Luttik, M. A. H., van Dijken, J. P., Pronk, J. T., Klaasen, P., Boelens, H. F. M., Joost Teixeira de Mattos, M., van Dam, K., and Kruckeberg, A. L. Glucose uptake kinetics and transcriptions of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274:15350–15359, 1999.
  • Elbing, K., Larsson, C., Bill, R. M., Albers, E., Snoep, J. L., Boles, E., Hohmann, S., and Gustafsson, L. Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70:5323–5330, 2004.
  • Ernandes, J. R., Williams, J. W., Russell, I., and Stewart, G. G. Effect of yeast adaptation to maltose utilization on sugar uptake during the fermentation of brewer's wort. J. Inst. Brew. 99:67–71, 1993.
  • Hazell, B. W., and Attfield, P. V. Enhancement of maltose utilisation by Saccharomyces cerevisiae in medium containing fermentable hexoses. J. Ind. Microbiol. Biotechnol. 22:627–632, 1999.
  • Klein, C. J. L., Olsson, L., and Nielsen, J. Nitrogen-limited continuous cultivations as a tool to quantify glucose control in Saccharomyces cerevisiae. Enzyme Microbiol. Technol. 23:91–100, 1998.
  • Klein, C. J. L., Olsson, L., and Nielsen, J. Glucose control in Saccharomyces cerevisiae: The role of MIG1 in metabolic functions. Microbiology 144:13–24, 1998.
  • Kobayashi, O., Hayashi, N., and Sone, H. The FLO1 genes determine two flocculation phenotypes distinguished by sugar inhibition. Proc. Eur. Brew. Congr. 25:361–368, 1995.
  • Kodama, Y., Fukui, N., Ashikara, T., Shibano, Y., Morioka-Fujimoto, K., Hiraki, Y., and Kazuo, N. Improvement of maltose fermentation efficiency: Constitutive expression of MAL genes in brewing yeasts. J. Am. Soc. Brew. Chem. 53:24–29, 1995.
  • Lagunas, R. Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 104:229–242, 1993.
  • Loureiro-Dias, M. C., and Peinado, J. M. Transport of maltose in Saccharomyces cerevisiae: Effect of pH and potassium ions. Biochem. J. 222:293–298, 1984.
  • Lucero, P., Herweijer, M., and Lagunas, R. Catabolite inactivation of the yeast maltose transporter is due to proteolysis. FEBS Lett. 333:165–168, 1993.
  • Masy, C. L., Henquinet, A., and Mestdagh, M. M. Flocculation of Saccharomyces cerevisiae: Inhibition by sugars. Can. J. Microbiol. 38:1298–1306, 1992.
  • Meneses, F. J., Henschke, P. A., and Jiranek, V. A survey of industrial strains of Saccharomyces cerevisiae reveals numerous altered patterns of maltose and sucrose utilisation. J. Inst. Brew. 108:310–321, 2002.
  • Meneses, F. J., and Jiranek, V. Expression patterns of genes and enzymes involved in sugar catabolism in industrial Saccharomyces cerevisiae strains displaying novel fermentation characteristics. J. Inst. Brew. 108:322–335, 2002.
  • Miki, B. L. A., Poon, N. H., James, A. P., and Seligy, V. L. Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J. Bacteriol. 150:878–889, 1982.
  • Needleman, R. Control of maltase synthesis in yeast. Mol. Microbiol. 5:2079–2084, 1991.
  • Nishihara, H., Miyake, K., and Kageyama, Y. Distinctly different characteristics of flocculation in yeast. J. Inst. Brew. 108:187–192, 2002.
  • Novak, S., Zechner-Krpan, V., and Maric, V. Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technol. Biotechnol. 42:213–218, 2004.
  • Penalver, E., Lucero, P., Moreno, E., and Lagunas, R. Catabolite inactivation of the maltose transporter in nitrogen-starved yeast could be due to the stimulation of general protein turnover. FEMS Microbiol. Lett. 166:317–324, 1998.
  • Pengelly, W. L. Bottle conditioning with high kraeusen wort. Tech. Q. Master Brew. Assoc. Am. 34:80–84, 1997.
  • Phaweni, M., O'Connor-Cox, E. S. C., Pickerell, A. T. W., and Axcell, B. The effects of glucose adjunct in high gravity fermentation by Saccharomyces cerevisiae 2036. J. Inst. Brew. 98:179–185, 1992.
  • Rautio, J., and Londesborough, J. Maltose transport by brewer's yeasts in brewer's wort. J. Inst. Brew. 109:251–261, 2003.
  • Shimoda, M., Cocunubo-Castellanos, J., Kago, H., Miyake, M., Osajima, Y., and Hayakawa, I. The influence of dissolved CO2 concentration on the death kinetics of Saccharomyces cerevisiae. J. Appl. Microbiol. 91:306–311, 2001.
  • Smart, K. A., Chambers, K. M., Lambert, I., Jenkins, C., and Smart, C. A. Use of methylene violet staining procedures to determine yeast viability and vitality. J. Am. Soc. Brew. Chem. 57:18–23, 1999.
  • Soares, E. V., Teixeira, J. A., and Mota, M. Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can. J. Microbiol. 40:851–857, 1994.
  • Soares, E. V., Vroman, A., Mortier, J., Rijsbrack, K., and Mota, M. Carbohydrate carbon sources induce loss of flocculation of an ale-brewing yeast strain. J. Appl. Microbiol. 96:1117–1123, 2004.
  • Stewart, G. G., Zheng, X., and Russell, I. Wort sugar uptake and metabolism—The influence of genetic and environmental factors. Proc. Congr. Eur. Brew. Conv. 25:403–410, 1995.
  • Stratford, M., and Assinder, S. Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast 7:559–574, 1991.
  • van den Berg, S., and Van Landschoot, A. Practical use of dried yeasts in the brewing industry. Cerevisia 28:25–30, 2003.
  • Vanderhaegen, B., Neven, H., Coghe, S., Verstrepen, K. J., Derdelinckx, G., and Verachtert, H. Bioflavouring and beer refermentation. Appl. Microbiol. Biotechnol. 62:140–150, 2003.
  • Van Landschoot, A., Vanbeneden, N., Vanderputten, D., and Derdelinckx, G. Effect of pitching yeast preparation on the refermentation of beer in bottles. Cerevisia 29:140–146, 2004.
  • Verstrepen, K. J., Derdelinckx, G., Verachtert, H., and Delvaux, F. R. Yeast flocculation: What brewers should know. Appl. Microbiol. Biotechnol. 61:197–205, 2003.
  • Verstrepen, K. J., Iserentant, D., Malcorps, P., Derdelinckx, G., Van Dijck, P., Winderinckx, J., Pretorius, I. S., Thevelein, J. M., and Delvaux, F. R. Glucose and sucrose: Hazardous fast-food for industrial yeast? Trends Biotechnol. 22:531–537, 2004.
  • Younis, O. S., and Stewart, G. G. Sugar uptake and subsequent ester and higher alcohol production by Saccharomyces cerevisiae. J. Inst. Brew. 104:255–264, 1998.
  • Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., and Boles, E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464:123–128, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.