1,155
Views
49
CrossRef citations to date
0
Altmetric
Invited Review

Ocular and systemic melatonin and the influence of light exposure

, OD PhD FAAO
Pages 99-108 | Received 03 Apr 2018, Accepted 09 Jul 2018, Published online: 21 Apr 2021

REFERENCES

  • Srinivasan V, Spence WD, Pandi‐perumal SR et al. Melatonin and human reproduction: shedding light on the darkness hormone. Gynecol Endocrinol 2009; 25: 779–785.
  • Cajochen C, Krauchi K, Wirz‐justice A. Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 2003; 15: 432–437.
  • Lerner AB, Case JD, Heinzelman RV. Structure of melatonin. J Am Chem Soc 1959; 81: 2.
  • Wiechmann AF, Bok D, Horwitz J. Melatonin‐binding in the frog retina: autoradiographic and biochemical analysis. Invest Ophthalmol Vis Sci 1986; 27: 153–163.
  • Cahill GM, Besharse JC. Light‐sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Vis Neurosci 1992; 8: 487–490.
  • Martin XD, Malina HZ, Brennan MC et al. The ciliary body‐‐the third organ found to synthesize indoleamines in humans. Eur J Ophthalmol 1992; 2: 67–72.
  • Hamm HE, Menaker M. Retinal rhythms in chicks: circadian variation in melantonin and serotonin N‐acetyltransferase activity. Proc Natl Acad Sci U S A 1980; 77: 4998–5002.
  • Hardeland R, Madrid JA, Tan DX et al. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52: 139–166.
  • Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 2006; 15: R271–R277.
  • Czeisler CA, Allan JS, Strogatz SH et al. Bright light resets the human circadian pacemaker independent of the timing of the sleep‐wake cycle. Science 1986; 233: 667–671.
  • Nickla DL. Ocular diurnal rhythms and eye growth regulation: where we are 50 years after Lauber. Exp Eye Res 2013; 114: 25–34.
  • Bernard M, Guerlotte J, Greve P et al. Melatonin synthesis pathway: circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reprod Nutr Dev 1999; 39: 325–334.
  • Lovenberg W, Jequier E, Sjoerdsma A. Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science 1967; 155: 217–219.
  • Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol 2010; 8: 168–181.
  • Facciola G, Hidestrand M, von Bahr C et al. Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes. Eur J Clin Pharmacol 2001; 56: 881–888.
  • Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 2005; 9: 11–24.
  • Aldhous M, Franey C, Wright J et al. Plasma concentrations of melatonin in man following oral absorption of different preparations. Br J Clin Pharmacol 1985; 19: 517–521.
  • Claustrat B, Brun J, Garry P et al. A once‐repeated study of nocturnal plasma melatonin patterns and sleep recordings in six normal young men. J Pineal Res 1986; 3: 301–310.
  • Pardridge WM. Transport of nutrients and hormones through the blood‐brain barrier. Diabetologia 1981; 20: 246–254.
  • Reppert SM, Godson C, Mahle CD et al. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A 1995; 92: 8734–8738.
  • Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 1994; 13: 1177–1185.
  • Dubocovich ML. Melatonin receptors: are there multiple subtypes? Trends Pharmacol Sci 1995; 16: 50–56.
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005; 27: 101–110.
  • Tosini G, Owino S, Guillaume JL et al. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays 2014; 36: 778–787.
  • Emet M, Ozcan H, Ozel L et al. A review of melatonin, its receptors and drugs. Eurasian J Med 2016; 48: 135–141.
  • Moore RY, Klein DC. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N‐acetyltransferase activity. Brain Res 1974; 71: 17–33.
  • Moore RY. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 1983; 42: 2783–2789.
  • Brainard GC, Hanifin JP, Greeson JM et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 2001; 21: 6405–6412.
  • Kalsbeek A, Garidou ML, Palm IF et al. Melatonin sees the light: blocking GABA‐ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 2000; 12: 3146–3154.
  • Dacey DM, Liao HW, Peterson BB et al. Melanopsin‐expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005; 433: 749–754.
  • Hattar S, Lucas RJ, Mrosovsky N et al. Melanopsin and rod‐cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424: 76–81.
  • Gamlin PD, Mcdougal DH, Pokorny J et al. Human and macaque pupil responses driven by melanopsin‐containing retinal ganglion cells. Vision Res 2007; 47: 946–954.
  • Kankipati L, Girkin CA, Gamlin PD. Post‐illumination pupil response in subjects without ocular disease. Invest Ophthalmol Vis Sci 2010; 51: 2764–2769.
  • Liao HW, Ren X, Peterson BB et al. Melanopsin‐expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol 2016; 524: 2845–2872.
  • Hannibal J, Christiansen AT, Heegaard S et al. Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity. J Comp Neurol 2017; 525: 1934–1961.
  • Ostergaard J, Hannibal J, Fahrenkrug J. Synaptic contact between melanopsin‐containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 2007; 48: 3812–3820.
  • Ruby NF, Brennan TJ, Xie X et al. Role of melanopsin in circadian responses to light. Science 2002; 298: 2211–2213.
  • Gooley JJ, Rajaratnam SM, Brainard GC et al. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2010; 2: 31ra3.
  • Iuvone PM, Tosini G, Pozdeyev N et al. Circadian clocks, clock networks, arylalkylamine N‐acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 2005; 24: 433–456.
  • Alkozi HA. Wang X, Perez de Lara MJ, et al. presence of melanopsin in human crystalline lens epithelial cells and its role in melatonin synthesis. Exp Eye Res 2017; 154: 168–176.
  • White MP, Fisher LJ. Effects of exogenous melatonin on circadian disc shedding in the albino rat retina. Vision Res 1989; 29: 167–179.
  • Pescosolido N, Gatto V, Stefanucci A et al. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic Physiol Opt 2015; 35: 201–205.
  • Crooke A, Guzman‐aranguez A, Mediero A et al. Effect of melatonin and analogues on corneal wound healing: involvement of Mt2 melatonin receptor. Curr Eye Res 2015; 40: 56–65.
  • Bai J, Dong L, Song Z et al. The role of melatonin as an antioxidant in human lens epithelial cells. Free Radic Res 2013; 47: 635–642.
  • Alarma‐estrany P, Pintor J. Melatonin receptors in the eye: location, second messengers and role in ocular physiology. Pharmacol Ther 2007; 113: 507–522.
  • Zawilska JB, Nowak JZ. Regulatory mechanisms in melatonin biosynthesis in retina. Neurochem Int 1992; 20: 23–36.
  • Bernard M, Donohue SJ, Klein DC. Human hydroxyindole‐O‐methyltransferase in pineal gland, retina and Y79 retinoblastoma cells. Brain Res 1995; 696: 37–48.
  • Fujieda H, Hamadanizadeh SA, Wankiewicz E et al. Expression of mt1 melatonin receptor in rat retina: evidence for multiple cell targets for melatonin. Neuroscience 1999; 93: 793–799.
  • Fujieda H, Scher J, Hamadanizadeh SA et al. Dopaminergic and GABAergic amacrine cells are direct targets of melatonin: immunocytochemical study of mt1 melatonin receptor in guinea pig retina. Vis Neurosci 2000; 17: 63–70.
  • Cahill GM, Besharse JC. Retinal melatonin is metabolized within the eye of Xenopus laevis. Proc Natl Acad Sci U S A 1989; 86: 1098–1102.
  • Besharse JC, Dunis DA. Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 1983; 219: 1341–1343.
  • Lavail MM. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science 1976; 194: 1071–1074.
  • Liang FQ, Green L, Wang C et al. Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res 2004; 78: 1069–1075.
  • Laurent V, Sengupta A, Sanchez‐bretano A et al. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium. Exp Eye Res 2017; 165: 90–95.
  • Wiechmann AF, Yang XL, Wu SM et al. Melatonin enhances horizontal cell sensitivity in salamander retina. Brain Res 1988; 453: 377–380.
  • Dubocovich ML. Melatonin is a potent modulator of dopamine release in the retina. Nature 1983; 306: 782–784.
  • Ribelayga C, Wang Y, Mangel SC. A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J Physiol 2004; 554: 467–482.
  • Nir I, Harrison JM, Haque R et al. Dysfunctional light‐evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 2002; 22: 2063–2073.
  • Manglapus MK, Iuvone PM, Underwood H et al. Dopamine mediates circadian rhythms of rod‐cone dominance in the Japanese quail retina. J Neurosci 1999; 19: 4132–4141.
  • Jackson CR, Chaurasia SS, Hwang CR et al. Dopamine D4 receptor activation controls circadian timing of the adenylyl cyclase 1 / cyclic AMP signaling system in mouse retina. Eur J Neurosci 2011; 34: 57–64.
  • Kunst S, Wolloscheck T, Kelleher DK et al. Pgc‐1alpha and Nr4a1 are target genes of circadian melatonin and dopamine release in murine retina. Invest Ophthalmol Vis Sci 2015; 56: 6084–6094.
  • Vancura P, Wolloscheck T, Baba K et al. Circadian and dopaminergic regulation of fatty acid oxidation pathway genes in retina and photoreceptor cells. PLoS One 2016; 11: e0164665.
  • Baba K, Debruyne JP, Tosini G. Dopamine 2 receptor activation entrains circadian clocks in mouse retinal pigment epithelium. Sci Rep 2017; 7: 5103.
  • Vancura P, Abdelhadi S, Csicsely E et al. Gnaz couples the circadian and dopaminergic system to G protein‐mediated signaling in mouse photoreceptors. PLoS One 2017; 12: e0187411.
  • Hwang CK, Chaurasia SS, Jackson CR et al. Circadian rhythm of contrast sensitivity is regulated by a dopamine‐neuronal PAS‐domain protein 2‐adenylyl cyclase 1 signaling pathway in retinal ganglion cells. J Neurosci 2013; 33: 14989–14997.
  • Boatright JH, Rubim NM, Iuvone PM. Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Vis Neurosci 1994; 11: 1013–1018.
  • Scher J, Wankiewicz E, Brown GM et al. AII amacrine cells express the MT1 melatonin receptor in human and macaque retina. Exp Eye Res 2003; 77: 375–382.
  • Tosini G, Dirden JC. Dopamine inhibits melatonin release in the mammalian retina: in vitro evidence. Neurosci Lett 2000; 286: 119–122.
  • Ivanova TN, Alonso‐gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor‐mediated inhibition of cAMP formation. Brain Res 2008; 1207: 111–119.
  • Huang H, Wang Z, Weng SJ et al. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32: 64–87.
  • Sheng WL, Chen WY, Yang XL et al. Co‐expression of two subtypes of melatonin receptor on rat M1‐type intrinsically photosensitive retinal ganglion cells. PLoS One 2015; 10: e0117967.
  • Chiquet C, Claustrat B, Thuret G et al. Melatonin concentrations in aqueous humor of glaucoma patients. Am J Ophthalmol 2006; 142: 325–327.e1
  • Alkozi H, Sanchez‐naves J, de Lara MJ et al. Elevated intraocular pressure increases melatonin levels in the aqueous humour. Acta Ophthalmol 2017; 95: e185–e189.
  • Osborne NN, Chidlow G. The presence of functional melatonin receptors in the iris‐ciliary processes of the rabbit eye. Exp Eye Res 1994; 59: 3–9.
  • Pintor J, Martin L, Pelaez T et al. Involvement of melatonin MT(3) receptors in the regulation of intraocular pressure in rabbits. Eur J Pharmacol 2001; 416: 251–254.
  • Serle JB, Wang RF, Peterson WM et al. Effect of 5‐MCA‐NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J Glaucoma 2004; 13: 385–388.
  • Huete‐toral F, Crooke A, Martinez‐aguila A et al. Melatonin receptors trigger cAMP production and inhibit chloride movements in nonpigmented ciliary epithelial cells. J Pharmacol Exp Ther 2015; 352: 119–128.
  • Rosenstein RE, Pandi‐perumal SR, Srinivasan V et al. Melatonin as a therapeutic tool in ophthalmology: implications for glaucoma and uveitis. J Pineal Res 2010; 49: 1–13.
  • Feigl B, Mattes D, Thomas R et al. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 4362–4367.
  • Wang H, Zhang Y, Ding J et al. Changes in the circadian rhythm in patients with primary glaucoma. PLoS One 2013; 8: e62841.
  • Meyer P, Pache M, Loeffler KU et al. Melatonin MT‐1‐receptor immunoreactivity in the human eye. Br J Ophthalmol 2002; 86: 1053–1057.
  • Rada JA, Wiechmann AF. Melatonin receptors in chick ocular tissues: implications for a role of melatonin in ocular growth regulation. Invest Ophthalmol Vis Sci 2006; 47: 25–33.
  • Wiechmann AF, Rada JA. Melatonin receptor expression in the cornea and sclera. Exp Eye Res 2003; 77: 219–225.
  • Wiechmann AF, Hollaway LR, Rada JA. Melatonin receptor expression in Xenopus laevis surface corneal epithelium: diurnal rhythm of lateral membrane localization. Mol Vis 2009; 15: 2384–2403.
  • Carracedo G, Carpena C, Concepcion P et al. Presence of melatonin in human tears. J Optom 2017; 10: 3–4.
  • Wahl C, Li T, Takagi Y et al. The effects of light regimes and hormones on corneal growth in vivo and in organ culture. J Anat 2011; 219: 766–775.
  • Hoyle CH, Peral A, Pintor J. Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit. Eur J Pharmacol 2006; 552: 159–161.
  • Pugazhenthi K, Kapoor M, Clarkson AN et al. Melatonin accelerates the process of wound repair in full‐thickness incisional wounds. J Pineal Res 2008; 44: 387–396.
  • Sasaki M, Masuda A, Oishi T. Circadian rhythms of corneal mitotic rate, retinal melatonin and immunoreactive visual pigments, and the effects of melatonin on the rhythms in the Japanese quail. J Comp Physiol A 1995; 176: 465–471.
  • Ciuffi M, Pisanello M, Pagliai G et al. Antioxidant protection in cultured corneal cells and whole corneas submitted to UV‐B exposure. J Photochem Photobiol B 2003; 71: 59–68.
  • Anwar MM, Moustafa MA. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation. Comp Biochem Physiol C Toxicol Pharmacol 2001; 129: 57–63.
  • Erren TC, Reiter RJ. Light hygiene: time to make preventive use of insights‐‐old and new‐‐into the nexus of the drug light, melatonin, clocks, chronodisruption and public health. Med Hypotheses 2009; 73: 537–541.
  • Klein DC, Coon SL, Roseboom PH et al. The melatonin rhythm‐generating enzyme: molecular regulation of serotonin N‐acetyltransferase in the pineal gland. Recent Prog Horm Res 1997; 52: 307–357.
  • Hamm HE, Takahashi JS, Menaker M. Light‐induced decrease of serotonin N‐acetyltransferase activity and melatonin in the chicken pineal gland and retina. Brain Res 1983; 266: 287–293.
  • Gastel JA, Roseboom PH, Rinaldi PA et al. Melatonin production: proteasomal proteolysis in serotonin N‐acetyltransferase regulation. Science 1998; 279: 1358–1360.
  • Benloucif S, Burgess HJ, Klerman EB et al. Measuring melatonin in humans. J Clin Sleep Med 2008; 4: 66–69.
  • Voultsios A, Kennaway DJ, Dawson D. Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin. J Biol Rhythms 1997; 12: 457–466.
  • Brainard GC, Hanifin JP. Photons, clocks, and consciousness. J Biol Rhythms 2005; 20: 314–325.
  • Ho mien I, Chua EC, Lau P et al. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction. PLoS One 2014; 9: e96532.
  • Altimus CM, Guler AD, Alam NM et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 2010; 13: 1107–1112.
  • Hanifin JP, Stewart KT, Smith P et al. High‐intensity red light suppresses melatonin. Chronobiol Int 2006; 23: 251–268.
  • Gradisar M, Wolfson AR, Harvey AG et al. The sleep and technology use of Americans: findings from the National Sleep Foundation's 2011 sleep in America poll. J Clin Sleep Med 2013; 9: 1291–1299.
  • Lemola S, Perkinson‐gloor N, Brand S et al. Adolescents' electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age. J Youth Adolesc 2015; 44: 405–418.
  • Cajochen C, Frey S, Anders D et al. Evening exposure to a light‐emitting diodes (LED)‐backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol 2011; 110: 1432–1438.
  • Ostrin LA, Abbott KS, Queener HM. Attenuation of short wavelengths alters sleep and the ipRGC pupil response. Ophthalmic Physiol Opt 2017; 37: 440–450.
  • Jnawali A, Backus BT, Quinlan EM et al. Physiological effects of ten days of total darkness in humans. Invest Ophthalmol Vis Sci 2017; 58 (Supp.): E‐Abstract 4133.
  • Pail G, Huf W, Pjrek E et al. Bright‐light therapy in the treatment of mood disorders. Neuropsychobiology 2011; 64: 152–162.
  • Levitan RD. What is the optimal implementation of bright light therapy for seasonal affective disorder (SAD)? J Psychiatry Neurosci 2005; 30: 72.
  • Golden RN, Gaynes BN, Ekstrom RD et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta‐analysis of the evidence. Am J Psychiatry 2005; 162: 656–662.
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073.
  • Gooley JJ. Treatment of circadian rhythm sleep disorders with light. Ann Acad Med Singapore 2008; 37: 669–676.
  • Rosenthal NE, Sack DA, Gillin JC et al. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984; 41: 72–80.
  • Thalen BE, Kjellman BF, Morkrid L et al. Light treatment in seasonal and nonseasonal depression. Acta Psychiatr Scand 1995; 91: 352–360.
  • Rosen LN, Targum SD, Terman M et al. Prevalence of seasonal affective disorder at four latitudes. Psychiatry Res 1990; 31: 131–144.
  • Brunello N, Armitage R, Feinberg I et al. Depression and sleep disorders: clinical relevance, economic burden and pharmacological treatment. Neuropsychobiology 2000; 42: 107–119.
  • Beck‐friis J, Ljunggren JG, Thoren M et al. Melatonin, cortisol and ACTH in patients with major depressive disorder and healthy humans with special reference to the outcome of the dexamethasone suppression test. Psychoneuroendocrinology 1985; 10: 173–186.
  • Danilenko KV, Putilov AA, Russkikh GS et al. Diurnal and seasonal variations of melatonin and serotonin in women with seasonal affective disorder. Arctic Med Res 1994; 53: 137–145.
  • Dahl K, Avery DH, Lewy AJ et al. Dim light melatonin onset and circadian temperature during a constant routine in hypersomnic winter depression. Acta Psychiatr Scand 1993; 88: 60–66.
  • Checkley SA, Murphy DG, Abbas M et al. Melatonin rhythms in seasonal affective disorder. Br J Psychiatry 1993; 163: 332–337.
  • Van cauter E, Holmback U, Knutson K et al. Impact of sleep and sleep loss on neuroendocrine and metabolic function. Horm Res 2007; 67: 2–9.
  • Vener KJ, Szabo S, Moore JG. The effect of shift work on gastrointestinal (GI) function: a review. Chronobiologia 1989; 16: 421–439.
  • Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Medicine Clinics 2015; 10: 523–535.
  • Shenshen Y, Minshu W, Qing Y et al. The effect of cataract surgery on salivary melatonin and sleep quality in aging people. Chronobiol Int 2016; 33: 1064–1072.
  • Brondsted AE, Sander B, Haargaard B et al. The effect of cataract surgery on circadian photoentrainment: a randomized trial of blue‐blocking versus neutral intraocular lenses. Ophthalmology 2015; 122: 2115–2124.
  • Davison JA, Patel AS, Cunha JP et al. Recent studies provide an updated clinical perspective on blue light‐filtering IOLs. Graefes Arch Clin Exp Ophthalmol 2011; 249: 957–968.
  • Lawrenson JG, Hull CC, Downie LE. The effect of blue‐light blocking spectacle lenses on visual performance, macular health and the sleep‐wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt 2017; 37: 644–654.
  • Brondsted AE, Haargaard B, Sander B et al. The effect of blue‐blocking and neutral intraocular lenses on circadian photoentrainment and sleep one year after cataract surgery. Acta Ophthalmol 2017; 95: 344–351.
  • Alexander I, Cuthbertson FM, Ratnarajan G et al. Impact of cataract surgery on sleep in patients receiving either ultraviolet‐blocking or blue‐filtering intraocular lens implants. Invest Ophthalmol Vis Sci 2014; 55: 4999–5004.
  • Jung SK, Lee JH, Kakizaki H et al. Prevalence of myopia and its association with body stature and educational level in 19‐year‐old male conscripts in Seoul. South Korea Invest Ophthalmol Vis Sci 2012; 53: 5579–5583.
  • Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt 2012; 32: 3–16.
  • Rose KA, Morgan IG, Ip J et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008; 115: 1279–1285.
  • Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Vis Sci 2015; 56: 6779–6787.
  • Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci 2010; 51: 5247–5253.
  • Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res 2013; 114: 106–119.
  • Sakamoto K, Liu C, Kasamatsu M et al. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci 2005; 22: 3129–3136.
  • Maynard ML, Zele AJ, Kwan AS et al. Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age‐related macular degeneration. Invest Ophthalmol Vis Sci 2017; 58: 990–996.
  • Wang F, Zhou J, Lu Y et al. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the guinea pig. Curr Eye Res 2011; 36: 103–111.
  • Lauber JK. Shutze Jv Mcginnis J. Effects of exposure to continuous light on the eye of the growing chick. Proc Soc Exp Biol Med 1961; 106: 871–872.
  • Gottlieb MD, Fugate‐wentzek LA, Wallman J. Different visual deprivations produce different ametropias and different eye shapes. Invest Ophthalmol Vis Sci 1987; 28: 1225–1235.
  • Nickla DL, Totonelly K. Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks. Exp Eye Res 2016; 146: 189–195.
  • Quinn GE, Shin CH, Maguire MG et al. Myopia and ambient lighting at night. Nature 1999; 399: 113–114.
  • Gwiazda J, Ong E, Held R et al. Myopia and ambient night‐time lighting. Nature 2000; 404: 144.
  • Zadnik K, Jones LA, Irvin BC et al. Myopia and ambient night‐time lighting. CLEERE Study Group. Collaborative longitudinal evaluation of ethnicity and refractive error. Nature 2000; 404: 143–144.
  • Saw SM, Zhang MZ, Hong RZ et al. Near‐work activity, night‐lights, and myopia in the Singapore‐China study. Arch Ophthalmol 2002; 120: 620–627.
  • Loman J, Quinn GE, Kamoun L et al. Darkness and near work: myopia and its progression in third‐year law students. Ophthalmology 2002; 109: 1032–1038.
  • Kearney S, O'donoghue L, Pourshahidi LK et al. Myopes have significantly higher serum melatonin concentrations than non‐myopes. Ophthalmic Physiol Opt 2017; 37: 557–567.
  • Ayaki M, Torii H, Tsubota K et al. Decreased sleep quality in high myopia children. Sci Rep 2016; 6: 33902.
  • Jee D, Morgan IG, Kim EC. Inverse relationship between sleep duration and myopia. Acta Ophthalmol 2016; 94: e204–e210.
  • Xu C, Pan C, Zhao C et al. Prevalence and risk factors for myopia in older adult east Chinese population. BMC Ophthalmol 2017; 17: 191.
  • Abbott KS, Queener HM, Ostrin LA. The ipRGC‐driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci 2018; 95: 9.
  • Zhou Z, Morgan IG, Chen Q et al. Disordered sleep and myopia risk among Chinese children. PLoS One 2015; 10: e0121796.
  • Adhikari P, Pearson CA, Anderson AM et al. Effect of age and refractive error on the melanopsin mediated post‐illumination pupil response (PIPR). Sci Rep 2015; 5: 17610.
  • Orr D, Mutti DO, Shorter P et al. The effect of light exposure on blue light‐driven pupil responses in myopes and non‐myopes. Optom Vis Sci. 2015; 92: E‐abstract 150035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.