450
Views
16
CrossRef citations to date
0
Altmetric
Invited Review

Correction of presbyopia: old problems with old (and new) solutions

, OD PhD FAAO & , PhD
Pages 21-30 | Received 13 Jul 2019, Accepted 20 Sep 2019, Published online: 15 Apr 2021

REFERENCES

  • Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 2012; 31: 622–660.
  • Hoffman DM, Banks MS. Focus information is used to interpret binocular images. J Vis 2010; 10: 13.
  • Thorn F, Schwartz F. Effects of dioptric blur on Snellen and grating acuity. Optom Vis Sci 1990; 67: 3–7.
  • Raviola E, Wiesel TN. Effect of dark‐rearing on experimental myopia in monkeys. Invest Ophthalmol Vis Sci 1978; 17: 485–488.
  • Smith EL 3rd. Spectacle lenses and emmetropization: the role of optical defocus in regulating ocular development. Optom Vis Sci 1998; 75: 388–398.
  • Smith EL 3rd, Hung LF. The role of optical defocus in regulating refractive development in infant monkeys. Vision Res 1999; 39: 1415–1435.
  • Schwab IR, Dubielzig RR, Schobert C. Evolution's Witness: How Eyes Evolved. New York: Oxford University Press, 2012.
  • Schwab IR, Hart N. Cover illustration. More than black and white. Br J Ophthalmol 2006; 90: 406.
  • Khorramshahia O, Schartaua JM. Krogera RHH. A complex system of ligaments and a muscle keep the crystalline lens in place in the eyes of boy fishes (teleosts). Vision Res 2008; 48: 1503–1508.
  • Hughes A. Observing accommodation in the cat. Vision Res 1973; 13: 481–482.
  • Alevogt R, Alevogt R. Studien zur Kinematik der Cha‐maÈ leonzunge. Z Vgl Physiol 1954; 36: 66–77.
  • Flanders M. Visually guided head movement in the African chameleon. Vision Res 1985; 25: 935–942.
  • Kirmse W, Kirmse R, Milev E. Visuomotor operation in transition from object fixation to prey shooting in chameleons. Biol Cybern 1994; 71: 209–214.
  • Muntz WRA, Raj U. On the visual system of Nautilius Pompilius. J Exp Biol 1984; 109: 253–263.
  • Gagnon Y, Soderberg B, Kroger R. Optical advantages and function of multifocal spherical fish lenses. J Opt Soc Am A Opt Image Sci Vis 2012; 29: 1786–1793.
  • Ott M, Schaeffel F, Kirmse W. Binocular vision and accommodation in prey‐catching chameleons. J Comp Physiol A 1998; 182: 319–330.
  • Duane A. An attempt to determine the normal range of accommodation at various ages, being a revision of Donder's experiments. Trans Am Ophthalmol Soc 1908; 11: 634–641.
  • Howland HC, Sivak JG. Penguin vision in air and water. Vision Res 1984; 24: 1905–1909.
  • Bito LZ, Kaufman PL, Derousseau CJ et al. Presbyopia: an animal model and experimental approaches for the study of the mechanism of accommodation and ocular ageing. Eye (Lond) 1987; 1: 222–230.
  • Wolffsohn JS, Davies LN. Presbyopia: effectiveness of correction strategies. Prog Retin Eye Res 2019; 68: 124–143.
  • Charman WN. Pinholes and presbyopia: solution or sideshow? Ophthalmic Physiol Opt 2019; 39: 1–10.
  • Barrett BT, Bradley A, Candy TR. The relationship between anisometropia and amblyopia. Prog Retin Eye Res 2013; 36: 120–158.
  • Legras R, Hornain V, Monot A et al. Effect of induced anisometropia on binocular through‐focus contrast sensitivity. Optom Vis Sci 2001; 78: 503–509.
  • Vandermeer G, Legras R, Gicquel JJ et al. Quality of vision with traditional monovision versus modified monovision. Acta Ophthalmol Suppl 2013; 91: S085.
  • Vandermeer G, Rio D, Gicquel JJ et al. Subjective through‐focus quality of vision with various versions of modified monovision. Br J Ophthalmol 2015; 99: 997–1003.
  • Ravikumar S, Bradley A, Bharadwaj S et al. Expanding binocular depth of focus by combining monovision with diffractive bifocal intraocular lenses. J Cataract Refract Surg 2016; 42: 1288–1296.
  • Kollbaum PS. Optical aberrations of contact lenses and eyes corrected with contact lenses. In: Optometry: Indiana University. Bloomington, Indiana, 2007. pp. 196–233.
  • Schor C, Landsman L, Erickson P. Ocular dominance and the interocular suppression of blur in monovision. Am J Optom Physiol Opt 1987; 64: 723–730.
  • Fernandez EJ, Schwarz C, Prieto PM et al. Impact on stereo‐acuity of two presbyopia correction approaches: monovision and small aperture inlay. Biomed Opt Express 2013; 4: 822–830.
  • Loshin DS. Binocular summation with monovision contact lens correction for presbyopia. Int Contact Lens Clinic 1982; 9: 161–173.
  • Collins M, Goode A, Brown B. Distance visual acuity and monovision. Optom Vis Sci 1993; 70: 723–728.
  • Lit A. Presentation of experimental data. J Am Optom Assoc 1968; 39: 1098–1099.
  • Westheimer G, Mckee SP. Stereoscopic acuity with defocused and spatially filtered retinal images. JOSA 1980; 70: 772–778.
  • Back A, Grant T, Hine N. Comparative visual performance of three presbyopic contact lens corrections. Optom Vis Sci 1992; 69: 474–480.
  • Freeman MH, Charman WN. An exploration of modified monovision with diffractive bifocal contact lenses. Cont Lens Anterior Eye 2007; 30: 189–196.
  • Smith CE, Allison RS, Wilkinson F et al. Monovision: consequences for depth perception from large disparities. Exp Eye Res 2019; 183: 62–67.
  • Pollard ZF, Greenberg MF, Bordenca M et al. Strabismus precipitated by monovision. Am J Ophthalmol 2011; 152: 479–482 e471.
  • Legge GE, Rubin GS. Binocular interactions in suprathreshold contrast perception. Percept Psychophys 1981; 30: 49–61.
  • Ding J, Sperling G. A gain‐control theory of binocular combination. Proc Natl Acad Sci U S A 2006; 103: 1141–1146.
  • Hickenbotham A, Tiruveedhula P, Roorda A. Comparison of spherical aberration and small‐pupil profiles in improving depth of focus for presbyopic corrections. J Cataract Refract Surg 2012; 38: 2071–2079.
  • Xu R, Wang H, Jaskulski M et al. Small‐pupil versus multifocal strategies for expanding depth of focus of presbyopic eyes. J Cataract Refract Surg 2019; 45: 647–655.
  • Smith G. Angular diameter of defocus blur discs. Am J Optometry and Physiol Optics 1982; 59: 885–889.
  • Winn B, Whitaker D, Elliott DB et al. Factors affecting light‐adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci 1994; 35: 1132–1137.
  • Chateau N, De brabander J, Bouchard F et al. Infrared pupillometry in presbyopes fitted with soft contact lenses. Optom Vis Sci 1996; 73: 733–741.
  • Xu R, Gil D, Dibas M et al. The effect of light level and small pupils on presbyopic reading performance. Invest Ophthalmol Vis Sci 2016; 57: 5656–5664.
  • Elliott SL, Choi SS, Doble N et al. Role of high‐order aberrations in senescent changes in spatial vision. J Vis 2009; 9: 24.1–16.
  • Guirao A, Gonzalez C, Redondo M et al. Average optical performance of the human eye as a function of age in a normal population. Invest Ophthalmol Vis Sci 1999; 40: 203–213.
  • Pointer JS. The presbyopic add. I. Magnitude and distribution in a historical context. Ophthalmic Physiol Opt 1995; 15: 235–240.
  • Cheng X, Thibos LN, Bradley A. Estimating visual quality from wavefront aberration measurements. J Refract Surg 2003; 19: S579–S584.
  • Cheng X, Bradley A, Thibos LN. Predicting subjective judgment of best focus with objective image quality metrics. J Vis 2004; 4: 310–321.
  • Thibos LN, Hong X, Bradley A et al. Accuracy and precision of objective refraction from wavefront aberrations. J Vis 2004; 4: 329–351.
  • Kim WS, Park IK, Chun YS. Quantitative analysis of functional changes caused by pinhole glasses. Invest Ophthalmol Vis Sci 2014; 55: 6679–6685.
  • Kim WS, Park IK, Park YK et al. Comparison of objective and subjective changes induced by multiple‐pinhole glasses and single‐pinhole glasses. J Korean Med Sci 2017; 32: 850–857.
  • Wittenberg S. Pinhole eyewear systems: a special report. J Am Optom Assoc 1993; 64: 112–116.
  • Dick HB. Small‐aperture strategies for the correction of presbyopia. Curr Opin Ophthalmol 2019; 30: 236–242.
  • Seyeddain O, Hohensinn M, Riha W et al. Small‐aperture corneal inlay for the correction of presbyopia: 3‐year follow‐up. J Cataract Refract Surg 2012; 38: 35–45.
  • Srinivasan S. Small aperture intraocular lenses: the new kids on the block. J Cataract Refract Surg 2018; 44: 927–928.
  • Campos M, Beer S, Nakano EM et al. Complete depigmentation of a small aperture corneal inlay implanted for compensation of presbyopia. Arq Bras Oftalmol 2017; 80: 52–56.
  • Got W. Correction of presbyopia with a small aperture corneal inlay. J Refract Surg 2011; 27: 842–845.
  • Dexl AK, Seyeddain O, Riha W et al. Reading performance after implantation of a small‐aperture corneal inlay for the surgical correction of presbyopia: two‐year follow‐up. J Cataract Refract Surg 2011; 37: 525–531.
  • Freeman E. Pinhole contact lenses. Am J Optom Arch Am Acad Optom 1952; 29: 347–352.
  • Albarran diego C, Montes‐mico R, Pons AM et al. Influence of the luminance level on visual performance with a disposable soft cosmetic tinted contact lens. Ophthalmic Physiol Opt 2001; 21: 411–419.
  • Atchison DA, Blazaki S, Suheimat M et al. Do small‐aperture presbyopic corrections influence the visual field? Ophthalmic Physiol Opt 2016; 36: 51–59.
  • Langenbucher A, Goebels S, Szentmary N et al. Vignetting and field of view with the KAMRA corneal inlay. Biomed Res Int 2013; 2013: 154593.
  • Nau A. A contact lens model to produce reversible visual field loss in healthy subjects. J Am Optom Assoc 2012; 83: 279–284.
  • Carkeet A. Field restriction and vignetting in contact lenses with opaque peripheries. Clin Exp Optom 1998; 81: 151–158.
  • Renna A, Alio JL, Vejarano LF. Pharmacological treatments of presbyopia: a review of modern perspectives. Eye Vis (Lond) 2017; 4: 3.
  • Abdelkader A. Improved presbyopic vision with miotics. Eye Contact Lens 2015; 41: 323–327.
  • Abdelkader A, Kaufman HE. Clinical outcomes of combined versus separate carbachol and brimonidine drops in correcting presbyopia. Eye Vis (Lond) 2016; 3: 31.
  • Benozzi J, Benozzi G, Orman B. Presbyopia: a new potential pharmacological treatment. Med Hypothesis Discov Innov Ophthalmol 2012; 1: 3–5.
  • Dick HB, Piovella M, Vukich J et al. Prospective multicenter trial of a small‐aperture intraocular lens in cataract surgery. J Cataract Refract Surg 2017; 43: 956–968.
  • Trindade C. Small aperture (pinhole) intraocular implant to increase depth of focus. In: Application UP ed. US, 2014.
  • Xu R, Wang H, Thibos LN et al. Interaction of aberrations, diffraction, and quantal fluctuations determine the impact of pupil size on visual quality. J Opt Soc Am A Opt Image Sci Vis 2017; 34: 481–492.
  • Xu R, Thibos L, Bradley A. Effect of target luminance on optimum pupil diameter for presbyopic eyes. Optom Vis Sci 2016; 93: 1409–1419.
  • Van nes F, Baouman M. Spatial modulation transfer in the human eye. JOSA 1967; 57: 401–406.
  • Banks MS, Geisler WS, Bennett PJ. The physical limits of grating visibility. Vision Res 1987; 27: 1915–1924.
  • Campbell FW, Gregory AH. Effect of size of pupil on visual acuity. Nature 1960; 187: 1121–1123.
  • Woodhouse JM. The effect of pupil size on grating detection at various contrast levels. Vision Res 1975; 15: 645–648.
  • Seyeddain O, Riha W, Hohensinn M et al. Refractive surgical correction of presbyopia with the AcuFocus small aperture corneal inlay: two‐year follow‐up. J Refract Surg 2010; 26: 707–715.
  • Mcdonald JE 2nd, El‐moatassem kotb AM, Decker BB. Effect of brimonidine tartrate ophthalmic solution 0.2% on pupil size in normal eyes under different luminance conditions. J Cataract Refract Surg 2001; 27: 560–564.
  • Marchini G, Pedrotti E, Sartori P et al. Ultrasound biomicroscopic changes during accommodation in eyes with accommodating intraocular lenses: pilot study and hypothesis for the mechanism of accommodation. J Cataract Refract Surg 2004; 30: 2476–2482.
  • Incorporated BaL. Bausch and Lomb Crystalens Accommodating Posterior Chamber Intraocular Lens Device Description. [Cited 07 Jan 2019] Available at: https://www.bausch.com/ecp/our-products/cataract-surgery/lens-systems/crystalens-ao, 2016.
  • Marcos S, Ortiz S, Perez‐merino P et al. Three‐dimensional evaluation of accommodating intraocular lens shift and alignment in vivo. Ophthalmology 2014; 121: 45–55.
  • Mcneely RN, Pazo E, Spence A et al. Visual quality and performance comparison between 2 refractive rotationally asymmetric multifocal intraocular lenses. J Cataract Refract Surg 2017; 43: 1020–1026.
  • Tan N, Zheng D, Ye J. Comparison of visual performance after implantation of 3 types of intraocular lenses: accommodative, multifocal, and monofocal. Eur J Ophthalmol 2014; 24: 693–698.
  • Lane SS, Morris M, Nordan L et al. Multifocal intraocular lenses. Ophthalmol Clin North Am 2006; 19: 89–105 vi.
  • Legras R, Rio D. Simulation of commercial vs theoretically optimised contact lenses for presbyopia. Ophthalmic Physiol Opt 2017; 37: 297–304.
  • Monsalvez‐romin D, Dominguez‐vicent A, Garcia‐lazaro S et al. Power profiles in multifocal contact lenses with variable multifocal zone. Clin Exp Optom 2018; 101: 57–63.
  • Kim E, Bakaraju RC, Ehrmann K. Power profiles of commercial multifocal soft contact lenses. Optom Vis Sci 2017; 94: 183–196.
  • Wagner S, Conrad F, Bakaraju RC et al. Power profiles of single vision and multifocal soft contact lenses. Cont Lens Anterior Eye 2015; 38: 2–14.
  • Robboy M, Erickson P. Performance comparison of current hydrophilic alternating vision bifocal contact lenses. Int Contact Lens Clinic 1987; 14: 237–243.
  • Borish IM, Soni S. Bifocal contact lenses. J Am Optom Assoc 1982; 53: 219–229.
  • Toshida H, Takahashi K, Sado K et al. Bifocal contact lenses: history, types, characteristics, and actual state and problems. Clin Ophthalmol 2008; 2: 869–877.
  • Hoffer KJ, Savini G. Multifocal intraocular lenses: historical perspective. In: Alió JL, Joseph P, eds. Multifocal Intraocular Lenses: The Art and the Practice, Essentials in Ophthalmology. Switzerland: Springer, 2014. pp. 5–28.
  • de Gracia P, Hartwig A. Optimal orientation for angularly segmented multifocal corrections. Ophthalmic Physiol Opt 2017; 37: 610–623.
  • de Gracia P, Dorronsoro C, Marcos S. Multiple zone multifocal phase designs. Opt Lett 2013; 38: 3526–3529.
  • Bradley A, Nam J, Xu R et al. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality. Ophthalmic Physiol Opt 2014; 34: 331–345.
  • Altoaimi BH, Kollbaum P, Meyer D et al. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto‐refractor. Ophthalmic Physiol Opt 2018; 38: 152–163.
  • Plainis S, Atchison DA, Charman WN. Power profiles of multifocal contact lenses and their interpretation. Optom Vis Sci 2013; 90: 1066–1077.
  • Klein SA. Understanding the diffractive bifocal contact lens. Optom Vis Sci 1993; 70: 439–460.
  • Davison JA, Simpson MJ. History and development of the apodized diffractive intraocular lens. J Cataract Refract Surg 2006; 32: 849–858.
  • Buralli D, Morris G, Rogers J. Optical performance of holographic kinoforms. Appl Optics 1989; 28: 976–983.
  • Ravikumar S, Bradley A, Thibos LN. Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses. J Cataract Refract Surg 2014; 40: 1192–1204.
  • Lee S, Choi M, Xu Z et al. Optical bench performance of a novel trifocal intraocular lens compared with a multifocal intraocular lens. Clin Ophthalmol 2016; 10: 1031–1038.
  • Alio JL, Plaza‐puche AB, Alio del barrio JL et al. Clinical outcomes with a diffractive trifocal intraocular lens. Eur J Ophthalmol 2018; 28: 419–424.
  • Cochener B, Boutillier G, Lamard M et al. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses. J Refract Surg 2018; 34: 507–514.
  • Barton K, Freeman MH, Woodward EG et al. Diffractive bifocal contact lenses in aphakia and pseudophakia. A pilot study Eye (Lond) 1991; 5: 344–347.
  • Schwiegerling J. Analysis of the optical performance of presbyopia treatments with the defocus transfer function. J Refract Surg 2007; 23: 965–971.
  • Choi J, Schwiegerling J. Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye. J Refract Surg 2008; 24: 218–222.
  • Zheleznyak L, Kim MJ, Macrae S et al. Impact of corneal aberrations on through‐focus image quality of presbyopia‐correcting intraocular lenses using an adaptive optics bench system. J Cataract Refract Surg 2012; 38: 1724–1733.
  • Simpson MJ. Re: assessing the optical performance of multifocal (diffractive) intraocular lenses. Ophthalmic Physiol Opt 2009; 29: 207.
  • Simpson MJ. Diffractive multifocal intraocular lens image quality. Appl Optics 1992; 31: 3621–3626.
  • Atchison DA, Ye M, Bradley A et al. Chromatic aberration and optical power of a diffractive bifocal contact lens. Optom Vis Sci 1992; 69: 797–804.
  • Bradley A, Abdul rahman H, Soni PS et al. Effects of target distance and pupil size on letter contrast sensitivity with simultaneous vision bifocal contact lenses. Optom Vis Sci 1993; 70: 476–481.
  • Freeman M, Stone J. A new diffractive bifocal contact lens. Trans BCLA 1987; 10: 15–22.
  • Radhakrishnan H, Charman WN. Age‐related changes in static accommodation and accommodative miosis. Ophthalmic Physiol Opt 2007; 27: 342–352.
  • Altoaimi BH, Almutairi MS, Kollbaum P et al. Accommodative behavior of eyes wearing aspheric single vision contact lenses. Optom Vis Sci 2017; 94: 971–980.
  • Charman WN, Radhakrishnan H. Accommodation, pupil diameter and myopia. Ophthalmic Physiol Opt 2009; 29: 72–79.
  • Whitefoot HD, Charman WN. Hyperchromatic lenses as potential aids for the presbyope. Ophthalmic Physiol Opt 1995; 15: 13–22.
  • Bradley A, Glenn A. Fry Award Lecture 1991: perceptual manifestations of imperfect optics in the human eye: attempts to correct for ocular chromatic aberration. Optom Vis Sci 1992; 69: 515–521.
  • Thibos LN, Ye M, Zhang X et al. Spherical aberration of the reduced schematic eye with elliptical refracting surface. Optom Vis Sci 1997; 74: 548–556.
  • Kollbaum PS, Bradley A, Thibos LN. Comparing the optical properties of soft contact lenses on and off the eye. Optom Vis Sci 2013; 90: 924–936.
  • Guirao A, Redondo M, Artal P. Optical aberrations of the human cornea as a function of age. J Opt Soc Am A Opt Image Sci Vis 2000; 17: 1697–1702.
  • Artal P, Berrio E, Guirao A et al. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis 2002; 19: 137–143.
  • Brunette I, Bueno JM, Harissi‐dagher M et al. Optical quality of the eye with the Artisan phakic lens for the correction of high myopia. Optom Vis Sci 2003; 80: 167–174.
  • Wang L, Santaella RM, Booth M et al. Higher‐order aberrations from the internal optics of the eye. J Cataract Refract Surg 2005; 31: 1512–1519.
  • Bakaraju RC, Ehrmann K, Ho A et al. Inherent ocular spherical aberration and multifocal contact lens optical performance. Optom Vis Sci 2010; 87: 1009–1022.
  • Guirao A, Williams DR, Cox IG. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher‐order aberrations. J Opt Soc Am A Opt Image Sci Vis 2001; 18: 1003–1015.
  • Kollbaum P, Jansen M, Thibos L et al. Validation of an off‐eye contact lens Shack‐Hartmann wavefront aberrometer. Optom Vis Sci 2008; 85: E817–E828.
  • Belda‐salmeron L, Drew T, Hall L et al. Objective analysis of contact lens fit. Cont Lens Anterior Eye 2015; 38: 163–167.
  • Woods RL, Saunders JE, Port MJ. Optical performance of decentered bifocal contact lenses. Optom Vis Sci 1993; 70: 171–184.
  • Wake E, Tienda JB, Uyekawa PM et al. Centration and coverage of hydrogel contact lenses. Am J Optom Physiol Opt 1981; 58: 302–308.
  • Mackie IA, Mason D, Perry BJ. Factors influencing corneal contact lens centration. Br J Physiol Opt 1970; 25: 87–103.
  • Holladay JT, Calogero D, Hilmantel G et al. Special report: American academy of ophthalmology task force summary statement for measurement of tilt, decentration, and chord length. Ophthalmology 2017; 124: 144–146.
  • Monestam E. Frequency of intraocular lens dislocation and pseudophacodonesis, 20-years after cataract surgery ‐ a prospective study. Am J Ophthalmol 2019; 198: 215–222.
  • Perez‐merino P, Marcos S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J Cataract Refract Surg 2018; 44: 889–896.
  • Schroder S, Schrecker J, Daas L et al. Impact of intraocular lens displacement on the fixation axis. J Opt Soc Am A Opt Image Sci Vis 2018; 35: 561–566.
  • Uzel MM, Ozates S, Koc M et al. Decentration and tilt of intraocular lens after posterior capsulotomy. Semin Ophthalmol 2018; 33: 766–771.
  • Zhu X, He W, Zhang Y et al. Inferior decentration of multifocal intraocular lenses in myopic eyes. Am J Ophthalmol 2018; 188: 1–8.
  • Zhu X, Zhang Y, He W et al. Tilt, decentration, and internal higher‐order aberrations of sutured posterior‐chamber intraocular lenses in patients with open globe injuries. J Ophthalmol 2017; 2017: 3517461.
  • Wang L, Koch DD. Ocular higher‐order aberrations in individuals screened for refractive surgery. J Cataract Refract Surg 2003; 29: 1896–1903.
  • Charman WN. Theoretical aspects of concentric varifocal lenses. Ophthalmic Physiol Opt 1982; 2: 75–86.
  • Charman WN, Murray IJ, Nacer M et al. Theoretical and practical performance of a concentric bifocal intraocular implant lens. Vision Res 1998; 38: 2841–2853.
  • Gatinel D, Loicq J. Clinically relevant optical properties of bifocal, trifocal, and extended depth of focus intraocular lenses. J Refract Surg 2016; 32: 273–280.
  • Bradley A, Kollbaum PS, Thibos LN. Multifocal correction providing improved quality of vision. In: USPTO ed. United States, 2012.
  • Arumugam B, Hung LF, To CH et al. The effects of simultaneous dual focus lenses on refractive development in infant monkeys. Invest Ophthalmol Vis Sci 2014; 55: 7423–7432.
  • Arumugam B, Hung LF, To CH et al. The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys. Invest Ophthalmol Vis Sci 2016; 57: 3949–3960.
  • Smith EL 3rd, Hung LF, Huang J et al. Effects of local myopic defocus on refractive development in monkeys. Optom Vis Sci 2013; 90: 1176–1186.
  • Smith EL 3rd, Ramamirtham R, Qiao‐grider Y et al. Effects of foveal ablation on emmetropization and form‐deprivation myopia. Invest Ophthalmol Vis Sci 2007; 48: 3914–3922.
  • Mutti DO, Sinnott LT, Reuter KS et al. Peripheral refraction and eye lengths in myopic children in the bifocal lenses in nearsighted kids (BLINK) study. Transl Vis Sci Technol 2019; 8: 17.
  • Liu Y, Wildsoet C. The effect of two‐zone concentric bifocal spectacle lenses on refractive error development and eye growth in young chicks. Invest Ophthalmol Vis Sci 2011; 52: 1078–1086.
  • Charman WN, Mountford J, Atchison DA et al. Peripheral refraction in orthokeratology patients. Optom Vis Sci 2006; 83: 641–648.
  • Smith EL 3rd, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res 2009; 49: 2386–2392.
  • Shen J, Clark CA, Soni PS et al. Peripheral refraction with and without contact lens correction. Optom Vis Sci 2010; 87: 642–655.
  • Almutleb ES, Bradley A, Jedlicka J et al. Simulation of a central scotoma using contact lenses with an opaque centre. Ophthalmic Physiol Opt 2018; 38: 76–87.
  • Fedtke C, Manns F, Ho A. The entrance pupil of the human eye: a three‐dimensional model as a function of viewing angle. Opt Express 2010; 18: 22364–22376.
  • Mathur A, Gehrmann J, Atchison DA. Pupil shape as viewed along the horizontal visual field. J Vis 2013; 13: 3.
  • Spring KH, Apparent shape SWS. Size of the pupil viewed obliquely. Br J Ophthalmol 1948; 32: 347–354.
  • Cheng X, Xu J, Chehab K et al. Soft contact lenses with positive spherical aberration for myopia control. Optom Vis Sci 2016; 93: 353–366.
  • Hiraoka T, Matsumoto Y, Okamoto F et al. Corneal higher‐order aberrations induced by overnight orthokeratology. Am J Ophthalmol 2005; 139: 429–436.
  • Hiraoka T, Okamoto C, Ishii Y et al. Contrast sensitivity function and ocular higher‐order aberrations following overnight orthokeratology. Invest Ophthalmol Vis Sci 2007; 48: 550–556.
  • Gifford P, Li M, Lu H et al. Corneal versus ocular aberrations after overnight orthokeratology. Optom Vis Sci 2013; 90: 439–447.
  • Chamberlain P, Peixoto‐de‐matos P, Logan NS et al. A three‐year randomized clinical trial of misight lenses for myopia control. Optom Vis Sci 2019; 96: 556–567.
  • Smith MJ, Walline JJ. Controlling myopia progression in children and adolescents. Adolesc Health Med Ther 2015; 6: 133–140.
  • Walline JJ, Greiner KL, Mcvey ME et al. Multifocal contact lens myopia control. Optom Vis Sci 2013; 90: 1207–1214.
  • Walline JJ, Lindsley K, Vedula SS et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev 2011: CD004916.
  • Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 2005; 30: 71–80.
  • Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol 2009; 93: 1181–1185.
  • Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 2011; 52: 2170–2174.
  • Santodomingo‐rubido J, Villa‐collar C, Gilmartin B et al. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci 2012; 53: 5060–5065.
  • Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2‐year randomized clinical trial. Invest Ophthalmol Vis Sci 2012; 53: 7077–7085.
  • Hiraoka T, Kakita T, Okamoto F et al. Long‐term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5‐year follow‐up study. Invest Ophthalmol Vis Sci 2012; 53: 3913–3919.
  • Charm J, Cho P. High myopia‐partial reduction ortho‐k: a 2‐year randomized study. Optom Vis Sci 2013; 90: 530–539.
  • Holden BA, Fricke TR, Ho SM et al. Global vision impairment due to uncorrected presbyopia. Arch Ophthalmol 2008; 126: 1731–1739.
  • Frick KD, Joy SM, Wilson DA et al. The global burden of potential productivity loss from uncorrected presbyopia. Ophthalmology 2015; 122: 1706–1710.
  • Tsuneyoshi Y, Higuchi A, Negishi K et al. Suppression of presbyopia progression with pirenoxine eye drops: experiments on rats and non‐blinded, randomized clinical trial of efficacy. Sci Rep 2017; 7: 6819.
  • Lai RW, Lu R, Danthi PS et al. Multi‐level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52: 86–108.
  • Southwell WH. Wave‐front estimation from wave‐front slope measurements. J Opt Soc Am 1980; 70: 998–1006.
  • Himebaugh NL, Nam J, Bradley A et al. Scale and spatial distribution of aberrations associated with tear breakup. Optom Vis Sci 2012; 89: 1590–1600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.