217
Views
9
CrossRef citations to date
0
Altmetric
Invited Review

Adaptive optics imaging of the retinal microvasculature

, BOptom PhD & , BSc BSc (Optom) PGCertOcTher PhD
Pages 112-122 | Received 03 Jul 2019, Accepted 20 Sep 2019, Published online: 15 Apr 2021

REFERENCES

  • Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. Prog Retin Eye Res 2008; 27: 161–176.
  • Ong Y‐T, Wong TY, Klein R et al. Hypertensive retinopathy and risk of stroke. Hypertension 2013; 62: 706–711.
  • Witt N, Wong TY, Hughes AD et al. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 2006; 47: 975–981.
  • Cheung CY‐l, Ikram MK, Chen C et al. Imaging retina to study dementia and stroke. Prog Ret Eye Res 2017; 57: 89–107.
  • Burton AC. Physiology and Biophysics of the Circulation: An Introductory Text. Chicago: Year Book Medical Publishers, 1972.
  • Snyder GK, Sheafor BA. Red blood cells: centerpiece in the evolution of the vertebrate circulatory system. Am Zool 1999; 39: 189–198.
  • Hamilton NB, Attwell D, Hall CN. Pericyte‐mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2010; 2: 5.
  • Bosetti F, Galis ZS, Bynoe MS et al. ‘Small blood vessels: big health problems?’: scientific recommendations of the National Institutes of Health workshop. J Am Heart Assoc 2016; 5: e004389.
  • Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns: IV. Diabetic retinopathy. Arch Ophthalmol 1961; 66: 366–378.
  • Berry C, Sidik N, Pereira AC et al. Small‐vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J Am Heart Assoc 2019; 8: e011104.
  • Dintenfass L. Inversion of the Fahraeus–Lindqvist phenomenon in blood flow through capillaries of diminishing radius. Nature 1967; 215: 1099.
  • Fahraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562–568.
  • Wolf S, Arend O, Reim M. Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol 1994; 38: S95–S100.
  • Roorda A, Romero‐borja F, Donnelly WJ III et al. Adaptive optics scanning laser ophthalmoscopy. Opt Express 2002; 10: 405–412.
  • Burns SA, Elsner AE, Sapoznik KA et al. Adaptive optics imaging of the human retina. Prog Retin Eye Res 2019; 68: 1–30.
  • Zhong Z, Petrig BL, Qi X et al. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. Opt Express 2008; 16: 12746–12756.
  • Wang RK, Zhang Q, Li Y et al. Optical coherence tomography angiography‐based capillary velocimetry. J Biomed Opt 2017; 22: 066008.
  • Nesper PL, Fawzi AA. Human parafoveal capillary vascular anatomy and connectivity revealed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2018; 59: 3858–3867.
  • Riva CE, Grunwald JE, Sinclair SH et al. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 1985; 26: 1124–1132.
  • Mo S, Krawitz B, Efstathiadis E et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 2016; 57: OCT130–OCT140.
  • Bedggood P, Metha A. Analysis of contrast and motion signals generated by human blood constituents in capillary flow. Opt Lett 2014; 39: 610–613.
  • Bedggood P, Daaboul M, Ashman RA et al. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. J Biomed Opt 2008; 13: 024008.
  • Liang J, Williams DR, Miller DT. Supernormal vision and high‐resolution retinal imaging through adaptive optics. J Opt Soc Am A 1997; 14: 2884–2892.
  • Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature 1999; 397: 520.
  • Tam J, Martin JA, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 2010; 51: 1691–1698.
  • Chui TY, Zhong Z, Song H et al. Foveal avascular zone and its relationship to foveal pit shape. Optom Vis Sci 2012; 89: 602.
  • Bedggood P, Metha A. Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation. PLoS One 2019; 14: e0218918.
  • Chui TY, Vannasdale DA, Burns SA. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 2012; 3: 2537–2549.
  • Chui TY, Gast TJ, Burns SA. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2013; 54: 7115–7124.
  • Sulai YN, Scoles D, Harvey Z et al. Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope. J Opt Soc Am A 2014; 31: 569–579.
  • Sapoznik KA, Luo T, De castro A et al. Enhanced retinal vasculature imaging with a rapidly configurable aperture. Biomed Opt Express 2018; 9: 1323–1333.
  • Gofas‐salas E, Mece P, Mugnier L et al. Near infrared adaptive optics flood illumination retinal angiography. Biomed Opt Express 2019; 10: 2730–2743.
  • Martin JA, Roorda A. Pulsatility of parafoveal capillary leukocytes. Exp Eye Res 2009; 88: 356–360.
  • Tam J, Roorda A. Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy. J Biomed Opt 2011; 16: 036002.
  • Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology 2005; 112: 2219–2224.
  • Arichika S, Uji A, Hangai M et al. Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2013; 54: 4394–4402.
  • Guevara‐torres A, Joseph A, Schallek J. Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. Biomed Opt Express 2016; 7: 4228–4249.
  • Joseph A, Guevara‐torres A, Schallek J. Imaging single‐cell blood flow in the smallest to largest vessels in the living retina. Elife 2019; 8: e45077.
  • Bedggood P, Metha A. Direct visualization and characterization of erythrocyte flow in human retinal capillaries. Biomed Opt Express 2012; 3: 3264–3277.
  • Gu B, Wang X, Twa MD et al. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high‐speed adaptive optics near‐confocal imaging. Biomed Opt Express 2018; 9: 3653–3677.
  • de Castro A, Huang G, Sawides L et al. Rapid high resolution imaging with a dual‐channel scanning technique. Opt Lett 2016; 41: 1881–1884.
  • Gorczynska I, Migacz JV, Zawadzki RJ et al. Comparison of amplitude‐decorrelation, speckle‐variance and phase‐variance OCT angiography methods for imaging the human retina and choroid. Biomed Opt Express 2016; 7: 911–942.
  • Salas M, Augustin M, Ginner L et al. Visualization of micro‐capillaries using optical coherence tomography angiography with and without adaptive optics. Biomed Opt Express 2017; 8: 207–222.
  • Zawadzki RJ, Choi SS, Jones SM et al. Adaptive optics‐optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. J Opt Soc Am A 2007; 24: 1373–1383.
  • Kurokawa K, Liu Z, Miller DT. Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris. Biomed Opt Express 2017; 8: 1803–1822.
  • Liu Z, Tam J, Saeedi O et al. Trans‐retinal cellular imaging with multimodal adaptive optics. Biomed Opt Express 2018; 9: 4246–4262.
  • Hillmann D, Spahr H, Hain C et al. Aberration‐free volumetric high‐speed imaging of in vivo retina. Sci Rep 2016; 6: 35209.
  • Rizzoni D, Agabiti‐rosei E. Structural abnormalities of small resistance arteries in essential hypertension. Intern Emerg Med 2012; 7: 205–212.
  • Koch E, Rosenbaum D, Brolly A et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens 2014; 32: 890.
  • Meixner E, Michelson G. Measurement of retinal wall‐to‐lumen ratio by adaptive optics retinal camera: a clinical research. Graefes Arch Clin Exp Ophthalmol 2015; 253: 1985–1995.
  • Arichika S, Uji A, Ooto S et al. Effects of age and blood pressure on the retinal arterial wall, analyzed using adaptive optics scanning laser ophthalmoscopy. Sci Rep 2015; 5: 12283.
  • Rosenbaum D, Kachenoura N, Koch E et al. Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives. Hypertens Res 2016; 39: 536.
  • Hillard JG, Gast TJ, Chui TY et al. Retinal arterioles in hypo‐, normo‐, and hypertensive subjects measured using adaptive optics. Transl Vis Sci Technol 2016; 5: 16.
  • Rosenbaum D, Mattina A, Koch E et al. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens 2016; 34: 1115–1122.
  • Burgansky‐eliash Z, Barak A, Barash H et al. Increased retinal blood flow velocity in patients with early diabetes mellitus. Retina 2012; 32: 112–119.
  • Burns SA, Elsner AE, Chui TY et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 2014; 5: 961–974.
  • Lombardo M, Parravano M, Serrao S et al. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging. Retina 2013; 33: 1630–1639.
  • Sherman TF. On connecting large vessels to small. The meaning of Murray's law. J Gen Physiol 1981; 78: 431–453.
  • Luo T, Gast TJ, Vermeer TJ et al. Retinal vascular branching in healthy and diabetic subjects. Invest Ophthalmol Vis Sci 2017; 58: 2685–2694.
  • Tam J, Dhamdhere KP, Tiruveedhula P et al. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 9257–9266.
  • Dubow M, Pinhas A, Shah N et al. Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 2014; 55: 1299–1309.
  • Lammer J, Karst SG, Lin MM et al. Association of Microaneurysms on adaptive optics scanning laser ophthalmoscopy with surrounding Neuroretinal pathology and visual function in diabetes. Invest Ophthalmol Vis Sci 2018; 59: 5633–5640.
  • Chui TYP, Pinhas A, Gan A et al. Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol Opt 2016; 36: 290–302.
  • Chui TY, Mo S, Krawitz B et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retina Vitreous 2016; 2: 11.
  • Nunes S, Pires I, Rosa A et al. Microaneurysm turnover is a biomarker for diabetic retinopathy progression to clinically significant macular edema: findings for type 2 diabetics with nonproliferative retinopathy. Ophthalmologica 2009; 223: 292–297.
  • Schreur V, Domanian A, Liefers B et al. Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography. Br J Ophthalmol 2019; 103: 630–635.
  • Fu X, Gens JS, Glazier JA et al. Progression of diabetic capillary occlusion: a model. PLoS Comput Biol 2016; 12: e1004932.
  • Bernabeu MO, Lu Y, Abu‐qamar O et al. Estimation of diabetic retinal microaneurysm perfusion parameters based on computational fluid dynamics modeling of adaptive optics scanning laser ophthalmoscopy. Front Physiol 2018; 9: 989.
  • Lu Y, Bernabeu MO, Lammer J et al. Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy. Biomed Opt Express 2016; 7: 4958–4973.
  • Karst SG, Lammer J, Radwan SH et al. Characterization of in vivo retinal lesions of diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. Int J Endocrinol 2018; 2018: 7492946.
  • Paques M, Meimon S, Rossant F et al. Adaptive optics ophthalmoscopy: application to age‐related macular degeneration and vascular diseases. Prog Retin Eye Res 2018; 66: 1–16.
  • Paques M, Brolly A, Benesty J et al. Venous nicking without arteriovenous contact: the role of the arteriolar microenvironment in arteriovenous nickings. JAMA Ophthalmol 2015; 133: 947–950.
  • Errera M‐H, Coisy S, Fardeau C et al. Retinal vasculitis imaging by adaptive optics. Ophthalmology 2014; 121: 1311–1312.e2.
  • Mcleod DS, Grebe R, Bhutto I et al. Relationship between RPE and choriocapillaris in age‐related macular degeneration. Invest Ophthalmol Vis Sci 2009; 50: 4982–4991.
  • Zhong Z, Song H, Chui TYP et al. Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. Invest Ophthalmol Vis Sci 2011; 52: 4151–4157.
  • Baskurt OK, Meiselman HJ. Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc 2013; 53: 23–37.
  • Arichika S, Uji A, Ooto S et al. Adaptive optics‐assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature. PLoS One 2014; 9: e89679.
  • Arichika S, Uji A, Murakami T et al. Retinal hemorheologic characterization of early‐stage diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2014; 55: 8513–8522.
  • Trip MD, Cats VM, van Capelle FJ et al. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990; 322: 1549–1554.
  • Nesbitt WS, Westein E, Tovar‐lopez FJ et al. A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009; 15: 665.
  • Pinhas A, Razeen M, Dubow M et al. Assessment of perfused foveal microvascular density and identification of nonperfused capillaries in healthy and vasculopathic eyes. Invest Ophthalmol Vis Sci 2014; 55: 8056–8066.
  • Tam J, Dhamdhere KP, Tiruveedhula P et al. Subclinical capillary changes in non proliferative diabetic retinopathy. Optom Vis Sci 2012; 89: E692.
  • Chandrasekera E, An D, Mcallister IL et al. Three‐dimensional microscopy demonstrates series and parallel Organization of Human Peripapillary Capillary Plexuses. Invest Ophthalmol Vis Sci 2018; 59: 4327–4344.
  • Mattace‐raso FU, van der Cammen TJ, Hofman A et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation 2006; 113: 657–663.
  • Li Q, Li L, Fan S et al. Retinal pulse wave velocity measurement using spectral‐domain optical coherence tomography. J Biophoton 2018; 11: e201700163.
  • Spahr H, Hillmann D, Hain C et al. Imaging pulse wave propagation in human retinal vessels using full‐field swept‐source optical coherence tomography. Opt Lett 2015; 40: 4771–4774.
  • Lu J, Gu B, Wang X et al. Adaptive optics parallel near‐confocal scanning ophthalmoscopy. Opt Lett 2016; 41: 3852–3855.
  • Alibhai AY, Moult EM, Shahzad R et al. Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina 2018; 2: 418–427.
  • Wangsa‐wirawan ND, Linsenmeier RA. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 2003; 121: 547–557.
  • Riva CE, Logean E, Falsini B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 2005; 24: 183–215.
  • Zhong Z, Huang G, Chui TYP et al. Local flicker stimulation evokes local retinal blood velocity changes. J Vis 2012; 12: 3.
  • Duan A, Bedggood PA, Bui BV et al. Evidence of flicker‐induced functional hyperaemia in the smallest vessels of the human retinal blood supply. PLoS One 2016; 11: e0162621.
  • Duan A, Bedggood PA, Metha AB et al. Reactivity in the human retinal microvasculature measured during acute gas breathing provocations. Sci Rep 2017; 7: 2113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.