292
Views
10
CrossRef citations to date
0
Altmetric
Invited Review

Potential mechanisms of retinal ganglion cell type‐specific vulnerability in glaucoma

, BSc (Hons), , BOptom, , PhD MSc, , PhD, , PhD, , PhD, , BSc (Hons), , MD, , PhD MScOptom & , PhD show all
Pages 562-571 | Received 19 Apr 2019, Accepted 16 Nov 2019, Published online: 15 Apr 2021

REFERENCES

  • Flaxman SR, Bourne RRA, Resnikoff S et al. Global causes of blindness and distance vision impairment 1990‐2020: a systematic review and meta‐analysis. Lancet Glob Health 2017; 5: e1221–e1234.
  • Leske MC, Heijl A, Hussein M et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003; 121: 48–56.
  • Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 2015; 38: 221–246.
  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901–1911.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262–267.
  • Stowell C, Burgoyne CF, Tamm ER et al. Glaucomatous Neurodegeneration P. Biomechanical aspects of axonal damage in glaucoma: a brief review. Exp Eye Res 2017; 157: 13–19.
  • Quigley HA, Addicks EM, Green WR et al. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 1981; 99: 635–649.
  • Weinreb RN, Khaw PT. Primary open‐angle glaucoma. Lancet 2004; 363: 1711–1720.
  • Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 1988; 95: 357–363.
  • Kerrigan‐baumrind LA, Quigley HA, Pease ME et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41: 741–748.
  • Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107: 453–464.
  • Morgan JE. Selective cell death in glaucoma: does it really occur? Br J Ophthalmol 1994; 78: 875–879.
  • Anderson RS, O'brien C. Psychophysical evidence for a selective loss of M ganglion cells in glaucoma. Vision Res 1997; 37: 1079–1083.
  • Sun H, Swanson WH, Arvidson B et al. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vision Res 2008; 48: 2633–2641.
  • Howe JW, Mitchell KW. Electrophysiologically determined contrast sensitivity in patients with ocular hypertension and chronic glaucoma. Doc Ophthalmol 1992; 80: 31–41.
  • Klistorner AI, Graham SL. Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential. J Glaucoma 1999; 8: 140–148.
  • Ansari EA, Morgan JE, Snowden RJ. Psychophysical characterisation of early functional loss in glaucoma and ocular hypertension. Br J Ophthalmol 2002; 86: 1131–1135.
  • Mckendrick AM, Badcock DR, Morgan WH. Psychophysical measurement of neural adaptation abnormalities in magnocellular and parvocellular pathways in glaucoma. Invest Ophthalmol Vis Sci 2004; 45: 1846–1853.
  • Mckendrick AM, Sampson GP, Walland MJ et al. Contrast sensitivity changes due to glaucoma and normal aging: low‐spatial‐frequency losses in both magnocellular and parvocellular pathways. Invest Ophthalmol Vis Sci 2007; 48: 2115–2122.
  • Sample PA, Bosworth CF, Blumenthal EZ et al. Visual function‐specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41: 1783–1790.
  • Sample PA, Bosworth CF, Weinreb RN. Short‐wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol 1997; 115: 1129–1133.
  • Casson EJ, Johnson CA, Shapiro LR. Longitudinal comparison of temporal‐modulation perimetry with white‐on‐white and blue‐on‐yellow perimetry in ocular hypertension and early glaucoma. J Opt Soc Am A Opt Image Sci Vis 1993; 10: 1792–1806.
  • Landers JA, Goldberg I, Graham SL. Detection of early visual field loss in glaucoma using frequency‐doubling perimetry and short‐wavelength automated perimetry. Arch Ophthalmol 2003; 121: 1705–1710.
  • Battista J, Badcock DR, Mckendrick AM. Spatial summation properties for magnocellular and parvocellular pathways in glaucoma. Invest Ophthalmol Vis Sci 2009; 50: 1221–1226.
  • Ansari EA, Morgan JE, Snowden RJ. Glaucoma: squaring the psychophysics and neurobiology. Br J Ophthalmol 2002; 86: 823–826.
  • Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol 1953; 16: 37–68.
  • Baden T, Berens P, Franke K et al. The functional diversity of retinal ganglion cells in the mouse. Nature 2016; 529: 345–350.
  • Krieger B, Qiao M, Rousso D et al. Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures. PLoS One 2017; 12: e0180091.
  • Della santina L, Inman DM, Lupien CB et al. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 2013; 33: 17444–17457.
  • Puyang Z, Gong HQ, He SG et al. Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury. Exp Eye Res 2017; 162: 97–103.
  • Famiglietti EV Jr, Kolb H. Structural basis for ON‐and OFF‐center responses in retinal ganglion cells. Science 1976; 194: 193–195.
  • Bae JA, Mu S, Kim JS et al. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 2018; 173: 1293–1306 e1219.
  • Duan X, Qiao M, Bei F et al. Subtype‐specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 2015; 85: 1244–1256.
  • Lee SK, Schmidt TM. Morphological identification of melanopsin‐expressing retinal ganglion cell subtypes in mice. Methods Mol Biol 2018; 1753: 275–287.
  • Rheaume BA, Jereen A, Bolisetty M et al. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat Commun 2018; 9: 2759.
  • Peng YR, Shekhar K, Yan W et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 2019; 176: 1222–1237 e1222.
  • Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991; 32: 484–491.
  • Vickers JC, Schumer RA, Podos SM et al. Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma. Brain Res 1995; 680: 23–35.
  • Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci 1998; 39: 2304–2320.
  • Yücel YH, Zhang Q, Weinreb RN et al. Effects of retinal ganglion cell loss on magno‐, parvo‐, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003; 22: 465–481.
  • Ito Y, Shimazawa M, Chen YN et al. Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res 2009; 89: 246–255.
  • Vickers JC. The cellular mechanism underlying neuronal degeneration in glaucoma: parallels with Alzheimer's disease. Aust N Z J Ophthalmol 1997; 25: 105–109.
  • Crawford ML, Harwerth RS, El S et al. Glaucoma in primates: cytochrome oxidase reactivity in parvo‐ and magnocellular pathways. Invest Ophthalmol Vis Sci 2000; 41: 1791–1802.
  • Shou T, Liu J, Wang W et al. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci 2003; 44: 3005–3010.
  • Shou TD, Zhou YF. Y cells in the cat retina are more tolerant than X cells to brief elevation of IOP. Invest Ophthalmol Vis Sci 1989; 30: 2093–2098.
  • Zhou Y, Wang W, Ren B et al. Receptive field properties of cat retinal ganglion cells during short‐term IOP elevation. Invest Ophthalmol Vis Sci 1994; 35: 2758–2764.
  • Mckinnon SJ, Schlamp CL, Nickells RW. Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 2009; 88: 816–824.
  • Zhao D, Nguyen CT, Wong VH et al. Characterization of the circumlimbal suture model of chronic IOP elevation in mice and assessment of changes in gene expression of stretch sensitive channels. Front Neurosci 2017; 11: 41.
  • John SW, Smith RS, Savinova OV et al. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 1998; 39: 951–962.
  • Della santina L, Ou Y. Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res 2017; 158: 43–50.
  • Ou Y, Jo RE, Ullian EM et al. Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. J Neurosci 2016; 36: 9240–9252.
  • El‐danaf RN, Huberman AD. Characteristic patterns of dendritic remodeling in early‐stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci 2015; 35: 2329–2343.
  • Sabharwal J, Seilheimer RL, Tao X et al. Elevated IOP alters the space‐time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U S A 2017; 114: 8859–8864.
  • Risner ML, Pasini S, Cooper ML et al. Axogenic mechanism enhances retinal ganglion cell excitability during early progression in glaucoma. Proc Natl Acad Sci U S A 2018; 115: E2393–E2402.
  • Chen H, Zhao Y, Liu M et al. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Invest Ophthalmol Vis Sci 2015; 56: 1971–1984.
  • Feng L, Zhao Y, Yoshida M et al. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 2013; 54: 1106–1117.
  • Sun D, Lye‐barthel M, Masland RH et al. The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 2009; 516: 1–19.
  • Daniel S, Clark AF, Mcdowell CM. Subtype‐specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov 2019; 5: 7.
  • Kurtenbach S, Kurtenbach S, Zoidl G. Emerging functions of pannexin 1 in the eye. Front Cell Neurosci 2014; 8: 263.
  • Dvoriantchikova G, Ivanov D, Barakat D et al. Genetic ablation of Pannexin1 protects retinal neurons from ischemic injury. PLoS One 2012; 7: e31991.
  • Dvoriantchikova G, Pronin A, Kurtenbach S et al. Pannexin 1 sustains the electrophysiological responsiveness of retinal ganglion cells. Sci Rep 2018; 8: 5797.
  • Locovei S, Scemes E, Qiu F et al. Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 2007; 581: 483–488.
  • Iglesias R, Locovei S, Roque A et al. P2X7 receptor‐Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 2008; 295: C752–C760.
  • North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82: 1013–1067.
  • Brändle U, Kohler K, Wheeler‐schilling TH. Expression of the P2X ‐receptor subunit in neurons of the rat retina. Mol Brain Res 1998; 62: 106–109.
  • Puthussery T, Fletcher EL. Synaptic localization of P2X7 receptors in the rat retina. J Comp Neurol 2004; 472: 13–23.
  • Kupenova P, Popova E, Vitanova L. Purinergic modulation of frog electroretinographic responses: the role of the ionotropic receptor P2X7. Vis Neurosci 2017; 34: E015.
  • Sugiyama T, Lee SY, Horie T et al. P2X(7) receptor activation may be involved in neuronal loss in the retinal ganglion cell layer after acute elevation of intraocular pressure in rats. Mol Vis 2013; 19: 2080–2091.
  • Hu H, Lu W, Zhang M et al. Stimulation of the P2X7 receptor kills rat retinal ganglion cells in vivo. Exp Eye Res 2010; 91: 425–432.
  • Nadal‐nicolás FM, Galindo‐romero C, Valiente‐soriano FJ et al. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci Rep 2016; 6: 38499.
  • Hartwick AT, Hamilton CM, Baldridge WH. Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells. J Physiol 2008; 586: 3425–3446.
  • Almasieh M, Wilson AM, Morquette B et al. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31: 152–181.
  • Cueva vargas JL, Osswald IK, Unsain N et al. Soluble tumor necrosis factor alpha promotes retinal ganglion cell death in glaucoma via calcium‐permeable AMPA receptor activation. J Neurosci 2015; 35: 12088–12102.
  • Martin KR, Levkovitch‐verbin H, Valenta D et al. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 2002; 43: 2236–2243.
  • Schuettauf F, Thaler S, Bolz S et al. Alterations of amino acids and glutamate transport in the DBA/2J mouse retina; possible clues to degeneration. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1157–1168.
  • Naskar R, Vorwerk CK, Dreyer EB. Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 2000; 41: 1940–1944.
  • Vorwerk CK, Lipton SA, Zurakowski D et al. Chronic low‐dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 1996; 37: 1618–1624.
  • Lebrun‐julien F, Duplan L, Pernet V et al. Excitotoxic death of retinal neurons in vivo occurs via a non‐cell‐autonomous mechanism. J Neurosci 2009; 29: 5536–5545.
  • Wen X, Cahill AL, Barta C et al. Elevated pressure increases Ca(2+) influx through ampa receptors in select populations of retinal ganglion cells. Front Cell Neurosci 2018; 12: 162.
  • Jones RS, Carroll RC, Nawy S. Light‐induced plasticity of synaptic AMPA receptor composition in retinal ganglion cells. Neuron 2012; 75: 467–478.
  • Reinach PS, Chen W, Mergler S. Polymodal roles of transient receptor potential channels in the control of ocular function. Eye Vis (Lond) 2015; 2: 5.
  • Gilliam JC, Wensel TG. TRP channel gene expression in the mouse retina. Vision Res 2011; 51: 2440–2452.
  • Sappington RM, Sidorova T, Long DJ et al. TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 2009; 50: 717–728.
  • Ryskamp DA, Witkovsky P, Barabas P et al. The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 2011; 31: 7089–7101.
  • Jo AO, Noel JM, Lakk M et al. Mouse retinal ganglion cell signalling is dynamically modulated through parallel anterograde activation of cannabinoid and vanilloid pathways. J Physiol 2017; 595: 6499–6516.
  • Lakk M, Young D, Baumann JM et al. Polymodal TRPV1 and TRPV4 sensors colocalize but do not functionally interact in a subpopulation of mouse retinal ganglion cells. Front Cell Neurosci 2018; 12: 353.
  • Ward NJ, Ho KW, Lambert WS et al. Absence of transient receptor potential vanilloid‐1 accelerates stress‐induced axonopathy in the optic projection. J Neurosci 2014; 34: 3161–3170.
  • Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 2013; 33: 1685–1695.
  • Kawasaki R, Wang JJ, Rochtchina E et al. Retinal vessel caliber is associated with the 10‐year incidence of glaucoma: the blue mountains eye study. Ophthalmology 2013; 120: 84–90.
  • Raman P, Suliman NB, Zahari M et al. Low nocturnal diastolic ocular perfusion pressure as a risk factor for NTG progression: a 5‐year prospective study. Eye (Lond) 2018; 32: 1183–1189.
  • Leske MC, Wu SY, Hennis A et al. Risk factors for incident open‐angle glaucoma: the Barbados eye studies. Ophthalmology 2008; 115: 85–93.
  • Baek SU, Kim YK, Ha A et al. Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open‐angle glaucoma. PLoS One 2019; 14: e0215684.
  • Yip VCH, Wong HT, Yong VKY et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma 2019; 28: 80–87.
  • Quigley HA, Hohman RM, Addicks EM et al. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci 1984; 25: 918–931.
  • Moreno M, Ríos MC, Alba C et al. Morphological and morphometric changes in rat optic nerve microvessels in a glaucoma experimental model. Arch Soc Esp Oftalmol 2014; 89: 471–476.
  • Lavery WJ, Muir ER, Kiel JW et al. Magnetic resonance imaging indicates decreased choroidal and retinal blood flow in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 560–564.
  • Ivanova E, Toychiev AH, Yee CW et al. Intersublaminar vascular plexus: the correlation of retinal blood vessels with functional sublaminae of the inner plexiform layer. Invest Ophthalmol Vis Sci 2014; 55: 78–86.
  • Kornfield TE, Newman EA. Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci 2014; 34: 11504–11513.
  • Cui Q, Ren C, Sollars PJ et al. The injury resistant ability of melanopsin‐expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2015; 284: 845–853.
  • Bristow EA, Griffiths PG, Andrews RM et al. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 2002; 120: 791–796.
  • Takihara Y, Inatani M, Eto K et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A 2015; 112: 10515–10520.
  • Wu JH, Zhang SH, Nickerson JM et al. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis 2015; 74: 167–179.
  • Kong YX, van Bergen N, Bui BV et al. Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury. Neurobiol Aging 2012; 33: e1115–e1125.
  • Burman JL, Yu S, Poole AC et al. Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants. Proc Natl Acad Sci U S A 2012; 109: 10438–10443.
  • Viader A, Wright‐jin EC, Vohra BP et al. Differential regional and subtype‐specific vulnerability of enteric neurons to mitochondrial dysfunction. PLoS One 2011; 6: e27727.
  • Pienaar IS, Elson JL, Racca C et al. Mitochondrial abnormality associates with type‐specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease. Am J Pathol 2013; 183: 1826–1840.
  • Myhr KL, Lukasiewicz PD, Wong RO. Mechanisms underlying developmental changes in the firing patterns of ON and OFF retinal ganglion cells during refinement of their central projections. J Neurosci 2001; 21: 8664–8671.
  • Freed MA. Asymmetry between ON and OFF alpha ganglion cells of mouse retina: integration of signal and noise from synaptic inputs. J Physiol 2017; 595: 6979–6991.
  • Kageyama GH, Wong‐riley MT. The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and ON/OFF‐center visual channels. J Neurosci 1984; 4: 2445–2459.
  • La morgia C, Ross‐cisneros FN, Sadun AA et al. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain 2010; 133: 2426–2438.
  • Robinson GA, Madison RD. Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res 2004; 44: 2667–2674.
  • de Sevilla müller LP, Sargoy A, Rodriguez AR et al. Melanopsin ganglion cells are the most resistant retinal ganglion cell type to axonal injury in the rat retina. PLoS One 2014; 9: e93274.
  • Li RS, Chen BY, Tay DK et al. Melanopsin‐expressing retinal ganglion cells are more injury‐resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci 2006; 47: 2951–2958.
  • Li SY, Yau SY, Chen BY et al. Enhanced survival of melanopsin‐expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway. Cell Mol Neurobiol 2008; 28: 1095–1107.
  • Vidal‐sanz M, Galindo‐romero C, Valiente‐soriano FJ et al. Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension. Front Neurosci 2017; 11: 235.
  • Georg B, Ghelli A, Giordano C et al. Melanopsin‐expressing retinal ganglion cells are resistant to cell injury, but not always. Mitochondrion 2017; 36: 77–84.
  • Perge JA, Koch K, Miller R et al. How the optic nerve allocates space, energy capacity, and information. J Neurosci 2009; 29: 7917–7928.
  • Ito YA, Di polo A. Mitochondrial dynamics, transport, and quality control: a bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion 2017; 36: 186–192.
  • Davis CH, Kim KY, Bushong EA et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 2014; 111: 9633–9638.
  • Chrysostomou V, Rezania F, Trounce IA et al. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol 2013; 13: 12–15.
  • Estevez ME, Fogerson PM, Ilardi MC et al. Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 2012; 32: 13608–13620.
  • Barreau E, Brossas JY, Courtois Y et al. Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci 1996; 37: 384–391.
  • Wang AL, Lukas TJ, Yuan M et al. Age‐related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol Aging 2010; 31: 2002–2010.
  • Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7: 278–294.
  • Milde S, Adalbert R, Elaman MH et al. Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiol Aging 2015; 36: 971–981.
  • Gilley J, Seereeram A, Ando K et al. Age‐dependent axonal transport and locomotor changes and tau hypophosphorylation in a "P301L" tau knockin mouse. Neurobiol Aging 2012; 33: 621.e1–621.e15.
  • Samuel MA, Zhang Y, Meister M et al. Age‐related alterations in neurons of the mouse retina. J Neurosci 2011; 31: 16033–16044.
  • Kimball EC, Jefferys JL, Pease ME et al. The effects of age on mitochondria, axonal transport, and axonal degeneration after chronic IOP elevation using a murine ocular explant model. Exp Eye Res 2018; 172: 78–85.
  • Ju WK, Kim KY, Lindsey JD et al. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci 2008; 49: 4903–4911.
  • Baltan S, Inman DM, Danilov CA et al. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J Neurosci 2010; 30: 5644–5652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.