27
Views
31
CrossRef citations to date
0
Altmetric
Invited Review

Recent developments in perimetry: test stimuli and procedures

, MScOptom PhD (Dr.)
Pages 73-80 | Received 26 Feb 2010, Accepted 10 Feb 2005, Published online: 15 Apr 2021

REFERENCES

  • Johnson CA, Keltner JL, Cello KE, Edwards M., Kass MS, Gordon MO, Bedenz DL, Gaasterland DE, Werner E.. Ocular Hypertension Study Group. Baseline visual field characteristics in the ocular hypertension treatment study. Ophthalmology 2002; 109: 432–437.
  • Bengtsson B., Hyman L., Bengtsson B., Hussein M.. Early Manifest Glaucoma Group. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120: 1268–1279.
  • Wild JM, Pacey IE, Hancock SA, Cunliffe IA. Between‐algorithm, between‐individual, differences in normal perimetric sensitivity: Full threshold, FASTPAC and SITA. Invest Ophthalmol Vis Sci 1999; 40: 1152–1161.
  • Wild JM, Pacey IE, O'neill EC, Cunliffe IA. The SITA perimetric threshold algorithms in glaucoma. Invest Ophthalmol Vis Sci 1999; 40: 1998–2009.
  • Artes PH, Iwase A., Ohno Y., Kitazawa Y., Chauhan BC. Properties of perimetric threshold estimates from full threshold, SITA standard, and SITA fast strategies. Invest Ophthalmol Vis Sci 2002; 43: 2654–2659.
  • Spry PGD, Johnson CA. Identification of progressive glaucomatous visual field loss. Surv Ophthalmol 2002; 47: 158–173.
  • Harwerth RS, Carter‐dawson L., Shen F., Smith EL 3rd, Crawford MLJ. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 1999; 40: 2242–2250.
  • Harwerth RS, Carter‐dawson L., Smith EL 3rd, Barnes G., Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 2004; 45: 3152–3160.
  • Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 1988; 95: 357–363.
  • Kerrigan‐baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucomatous eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41: 741–748.
  • Hendry SH, Reid RC. The koniocellular pathway in primate vision. Annu Rev Neurosci 2000; 23: 127–153.
  • Kaplan E., Benardette E.. The dynamics of primate retinal ganglion cells. Prog Brain Res 2001; 134: 17–34.
  • Glovinsky Y., Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991; 32: 484–491.
  • Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 5–25.
  • Dacey DM. Physiology, morpholgy, and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp 1994; 184: 12–34.
  • Dacey DM, Petersen MR. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Nat Acad Sci USA 1992; 89: 9666–9670.
  • Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma 2002; 11: 365–370.
  • Morgan JE, Uchida H., Caprioli J.. Retinal ganglion cell death in glaucoma. Br J Ophthalmol 2000; 84: 303–310.
  • Yucel YH, Zhang Q., Gupta N., Kaufman PL, Weinreb RN. Loss of neurons in magno‐cellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 2000; 118: 378–384.
  • Yucel YH, Zhang Q., Weinreb RN, Kaufman PL, Gupta N.. Effects of retinal ganglion cell loss on magno‐, parvo‐ and koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Ret Eye Res 2003; 22: 465–481.
  • Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss for blue‐on‐yellow and standard white‐on‐white automated perimetry. Arch Ophthalmol 1993; 111: 651–656.
  • Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue‐on‐yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993; 111: 645–650.
  • Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency‐doubling perimetry. Invest Ophthalmol Vis Sci 1997; 38: 413–425.
  • Casson EJ, Johnson CA, Shapiro LR. Longitudinal comparison of temporal‐modulation perimetry with white‐on‐white and blue‐on‐yellow perimetry in ocular hypertension and early glaucoma. J Opt Soc Am A 1993; 10: 1792–1806.
  • Sample PA, Bosworth CF, Weinreb RN. Short wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Arch Ophthalmol 1997; 115: 1129–1133.
  • Sample PA, Taylor JDN, Martinez G., Lusky M., Weinreb RN. Short‐wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol 1993; 115: 225–233.
  • Johnson CA. Selective versus nonselective losses in glaucoma. J Glaucoma 1994; 3: S32–S44.
  • Dacey DM. The mosaic of midget ganglion cells in the human retina. J Neurosci 1993; 13: 5334–5355.
  • Sample PA. Short‐wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function. Prog Retin Eye Res 2000; 19: 369–383.
  • Demirel S., Johnson CA. Incidence and prevalence of short wavelength automated perimetry deficits in ocular hypertensive patients. Am J Ophthalmol 2001; 131: 709–715.
  • Girkin CA, Emdadi A., Sample PA, Blumenthal EZ, Lee AC, Zangwill LM, Weinreb RN. Short‐wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping. Arch Ophthalmol 2000; 118: 1231–1236.
  • Nomura R., Terasaki H., Hirose H., Miyake Y.. Blue‐on‐yellow perimetry to evaluate S cone sensitivity in diabetes. Ophthalmic Res 2000; 32: 69–72.
  • Remky A., Arend O., Hendrick S.. Short‐wavelength automated perimetry and capillary density in early diabetic maculopathy. Invest Ophthalmol Vis Sci 2000; 41: 274–281.
  • Mckendrick AM, Cioffi GA, Johnson CA. Short wavelength sensitivity deficits in patients with migraine. Arch Ophthalmol 2002; 120: 154–161.
  • Verrotti A., Lobefalo L., Priolo T., Rapinese M., Trotta D., Morgese G., Gallenga PE, Chiarelli F.. Color vision in epileptic adolescents treated with valproate and carbamazepine. Seizure 2004; 13: 411–417.
  • Eisner A., Austin DF, Samples JR. Short wavelength automated perimetry and tamoxifen use. Br J Ophthalmol 2004; 88: 125–130.
  • Blumenthal EZ, Sample PA, Berry CC, Lee AC, Girkin CA, Zangwill L., Caprioli J., Weinreb RN. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects and normals. Ophthalmology 2003; 110: 1895–1902.
  • Wild JM, Cubbidge RP, Pacey IE, Robinson R.. Statistical aspects of the normal visual field in short‐wavelength automated perimetry. Invest Ophthalmol Vis Sci 1998; 39: 54–63.
  • Mojon DS, Zulauf M.. Normal values of short‐wavelength automated perimetry. Ophthalmologica 2003; 217: 260–264.
  • Sample PA, Johnson CA, Haegerstrom‐portnoy G., Adams AJ. Optimal parameters for short‐wavelength automated perimetry. J Glaucoma 1996; 5: 375–383.
  • Sample PA, Martinez GA, Weinreb RN. Short‐wavelength automated perimetry without lens density testing. Am J Ophthalmol 1994; 118: 632–641.
  • Bengtsson B.. A new rapid algorithm for short‐wavelength automated perimetry. Invest Ophthalmol Vis Sci 2003; 44: 1388–1394.
  • Bengtsson B., Heijl A.. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci 2003; 44: 5029–5034.
  • Maddess T., Henry GH. Performance of nonlinear visual units in ocular hypertension and glaucoma. Clin Vis Sci 1992; 7: 371–383.
  • Cello KE, Nelson‐quigg JM, Johnson CA. Frequency doubling technology perimetry for detection of glaucomatous field loss. Am J Ophthalmol 2000; 129: 314–322.
  • Kelly DH. Frequency doubling in visual responses. J Opt Soc Am 1966; 56: 1628–1633.
  • Kelly DH. Nonlinear visual responses to flickering sinusoidal gratings. J Opt Soc Am 1981; 71: 1051–1055.
  • White AJR, Sun H., Swanson WH, Lee BB. An examination of physiological mechanisms underlying the frequency‐doubling illusion. Invest Ophthalmol Vis Sci 2002; 43: 3590–3599.
  • Casson R., James B., Rubinstein A., Ali H.. Clinical comparison of frequency doubling technology perimetry and Humphrey perimetry. Br J Ophthalmol 2001; 85: 360–362.
  • Medeiros FA, Sample PA, Weinreb RN. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am J Ophthalmol 2004; 137: 863–871.
  • Spry PGD, Johnson CA, Mckendrick AM, Turpin A.. Variability components of standard automated perimetry and frequency doubling technology perimetry. Invest Ophthalmol Vis Sci 2001; 42: 1404–1410.
  • Wall M., Neahring RK, Woodward KR. Sensitivity and specificity of frequency doubling perimetry in neuro‐ophthalmic disorders: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci 2002; 43: 1277–1283.
  • Tavarati P., Woodward KR, Carolan JA et al. Frequency doubling technology perimetry 2 (24–2) in the evaluation of homonymous hemianopia. Invest Ophthalmol Vis Sci 2003; 44: E‐Abstract 1956, ARVO Abstract.
  • Artes PH, Nicolela MT, Mccormick TA, Leblanc RP, Chauhan BC. Effects of blur and repeated testing on sensitivity estimates with frequency doubling perimetry. Invest Ophthalmol Vis Sci 2003; 44: 646–652.
  • Lachenmayr BJ, Drance SM, Douglas GR, Mikelberg FS. Light‐sense, flicker and resolution perimetry in glaucoma: a comparative study. Graefes Arch Clin Exp Ophthalmol 1991; 229: 246–251.
  • Dudzinski A., Zawojska I., Kinasz R.. Flicker perimetry (CFF) in glaucoma diagnosis. Klin Oczna 2003; 105: 283–287.
  • Lachenmayr BJ, Gleissner M.. Flicker perimetry resists retinal image degradation. Invest Ophthalmol Vis Sci 1992; 33: 3539–3542.
  • Anderson AJ, Vingrys AJ. Interactions between flicker thresholds and luminance pedestals. Vision Res 2000; 40: 2579–2588.
  • Vingrys AJ, Demirel S., Kalloniatis M.. Multidimensional colour, flicker and increment perimetry. In: Mills R., Wall M., eds. Perimetry Update 1994/5. Amsterdam: Kugler Publications, 1995.
  • Yoshiyama KK, Johnson CA. Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss Invest Ophthalmol Vis Sci 1997; 38: 2270–2277.
  • Phipps JA, Dang TM, Vingrys AJ, Guymer RH. Flicker perimetry losses in age‐related macular degeneration. Invest Ophthalmol Vis Sci 2004; 45: 3355–3360.
  • Mckendrick AM, Badcock DR. An analysis of the factors associated with visual field deficits measured with flickering stimuli in between migraine. Cephalalgia 2004; 24: 389–397.
  • Mckendrick AM, Vingrys AJ, Badcock DR, Heywood JT. Visual field losses in subjects with migraine headaches. Invest Ophthalmol Vis Sci 2000; 41: 1239–1247.
  • Pesudovs K., Vingrys AJ. Flicker perimetry and retinal pigment epithelial detachment. Clin Exp Optom 1994; 77: 58–63.
  • Frisen L.. A computer graphics visual field screener using high‐pass spatial frequency resolution targets and multiple feedback devices. Doc Ophthalmol Proc Ser 1987; 49: 441–446.
  • Frisen L.. High‐pass resolution targets in peripheral vision. Ophthalmology 1987; 94: 1104–1108.
  • Ennis FA, Johnson CA. Are high‐pass resolution perimetry thresholds sampling limited or optically limited Optom Vis Sci 2002; 79: 506–511.
  • Chauhan BC. The value of high‐pass resolution perimetry in glaucoma. Curr Opin Ophthalmol 2000; 11: 85–89.
  • Frisen L.. New, sensitive window on abnormal spatial vision: rarebit probing. Vision Res 2002; 42: 1931–1939.
  • Frisen L.. Spatial vision in visually asymptomatic subjects at high risk for multiple sclerosis. J Neurol Neurosurg Psychiatry 2003; 74: 1145–1147.
  • Martin L., Wanger P.. New perimetric techniques: a comparison between rarebit and frequency doubling technology perimetry in normal subjects and glaucoma patients. J Glaucoma 2004; 13: 268–272.
  • Sample PA, Bosworth CF, Blumenthal EZ, Girkin C., Weinreb RN. Visual function‐specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41: 1783–1790.
  • Anderson DR, Patella VM. Automated Static Perimetry, 2nd Ed. St Louis, Missouri: Mosby, 1999.
  • Turpin A., Mckendrick AM, Johnson CA, Vingrys AJ. Properties of perimetric threshold estimates from full threshold, ZEST and SITA‐like strategies, as determined by computer simulation. Invest Ophthalmol Vis Sci 2003; 44: 4787–4795.
  • Heijl A., Lindgren A., Lindgren G.. Test‐retest variability in glaucomatous visual fields. Am J Ophthalmol 1989; 108: 130–135.
  • King‐smith P., Grigsby S., Vingrys A., Benes S., Supowit A.. Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation, and practical implementation. Vision Res 1994; 34: 885–912.
  • Turpin A., Mckendrick AM, Johnson CA, Vingrys AJ. Performance of efficient test procedures for frequency‐doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2002; 43: 709–715.
  • Turpin A., Mckendrick AM, Johnson CA, Vingrys AJ. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. Invest Ophthalmol Vis Sci 2002; 43: 322–331.
  • Bengtsson B., Heijl A.. Evaluation of a new perimetric strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand 1998; 76: 368–375.
  • Bengtsson B., Heilj A., Olsson J.. Evaluation of a new threshold visual field strategy, SITA, in normal subjects. Acta Ophthalmol Scand 1998; 76: 165–169.
  • Bengtsson B., Olsson J., Heijl A., Rootzen H.. A new generation of algorithms for computerized threshold perimetry. Acta Ophthalmol Scand 1997; 75: 368–375.
  • Bengtsson B., Heijl A.. SITA Fast, a new rapid perimetric threshold test: description of methods and evaluation in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand 1998; 76: 431–437.
  • Olsson J., Bengtsson B., Heijl A., Rootzen H.. An improved method to estimate frequency of false positive answers in computerized perimetry. Acta Ophthalmol Scand 1997; 75: 181–183.
  • Budenz DL, Rhee P., Feuer WJ, Mcsoley J., Johnson CA, Anderson DR. Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Arch Ophthalmol 2002; 120: 1136–1141.
  • Shirato S., Inoue R., Fukushima K., Suzuki Y.. Clinical evaluation of SITA: a new family of perimetric testing strategies. Graefes Arch Clin Exp Ophthalmol 1999; 237: 29–34.
  • de la Rosa Gonsalez M., Martinez A., Sanchez M., Mesa C., Cordoves L., Losada MJ. Accuracy of tendency‐oriented perimetry with the Octopus 1–2‐3 perimeter. In: Wall M., Heijl A., eds. Perimetry Update 1996/7. Amsterdam: Kugler Publications, 1997.
  • de la Rosa Gonsalez M., Mesa F., Arteaga V., Gonsalez‐hernandez M.. Second generation of the tendency oriented perimetry algorithm: TOP plus. Proceedings of the XIVth International Perimetric Society Meeting, Halifax, Canada, September 6–9, 2000. 2001: 155–159.
  • Morales J., Brown SM. The feasability of short automated static perimetry in children. Ophthalmology 2001; 108: 157–162.
  • Morales J., Weitzman ML, de la Rosa Gonzalez M.. Comparison between tendency‐oriented perimetry (TOP) and Octopus threshold perimetry. Ophthalmology 2000; 107: 134–142.
  • Anderson AJ. Spatial resolution of the tendency‐oriented perimetry algorithm. Invest Ophthalmol Vis Sci 2003; 44: 1962–1968.
  • Artes PH, Henson DB, Harper R., Mcleod D.. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full‐threshold strategies by computer simulation. Invest Ophthalmol Vis Sci 2003; 44: 2582–2587.
  • Henson DB, Artes PH. New developments in supra‐threshold perimetry. Ophthalmic Physiol Opt 2002; 22: 463–468.
  • Mckendrick AM, Turpin A.. Combining perimetric supra‐threshold and threshold procedures to reduce measurement variability in areas of visual field loss. Optom Vis Sci 2005; 82: 43–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.