127
Views
55
CrossRef citations to date
0
Altmetric
Papers

Clinical applications and new developments of optical coherence tomography: an evidence‐based review

, BAppSc(Optom) (Hons) GradCert (Ocular Therapeutics) PhD & , MB BS FRANZCO FRACS
Pages 317-335 | Received 30 Nov 2006, Accepted 06 Mar 2007, Published online: 15 Apr 2021

REFERENCES

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al. Optical coherence tomography. Science 1991; 254 (5035): 1178–1181.
  • Thomas D, Duguid G. Optical coherence tomography—a review of the principles and contemporary uses in retinal investigation. Eye 2004; 18: 561–570.
  • Hee MR, Baumal CR, Puliafito CA, Duker JS, Reichel E, Wilkins JR, Coker JG, Schuman JS, Swanson EA, Fujimoto JG. Optical coherence tomography of age‐related macular degeneration and choroidal neovascularization. Ophthalmology 1996; 103: 1260–1270.
  • Massin P, Girach A, Erginay A, Gaudric A. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand 2006; 84: 466–474.
  • Panozzo, G, Gusson E, Parolini B, Mercanti A. Role of OCT in the diagnosis and follow‐up of diabetic macular edema. Sem Ophthalmol 2003; 18: 74–81.
  • Kusuhara, S, Teraoka escano MF, Fujii S, Nakanishi Y, Tamura Y, Nagai A, Yamamoto H, Tsukahara Y, Negi A. Prediction of postoperative visual outcome based of hole configuration by optical coherence tomography in eyes with idiopathic macular holes. Am J Ophthalmol 2004; 138: 709–716.
  • Altaweel M, Ip M. Macular hole: improved understanding of pathogenesis, staging, and management based on optical coherence tomography. Sem Ophthalmol 2003; 18: 58–66.
  • Chan A, Duker JS, Schuman JS, Fujimoto JG. Stage 0 macular holes: observations by optical coherence tomography. Ophthalmology 2004; 111: 2027–2032.
  • Gallemore RP, Jumper JM, Mccuen BW 2nd, Jaffe GJ, Postel EA, Toth CA. Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 2000; 20: 115–120.
  • Wilkins JR, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, Schuman JS, Swanson EA, Fujimoto JG. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 1996; 103: 2142–2151.
  • Mori K, Gehlbach PL, Sano A, Deguchi T, Yoneya S. Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 2004; 24: 57–62.
  • Costa, RA, Skaf M, Melo LAS Jr, Calucci D, Cardillo JA, Castro JC, Huang D, Wojtkowski M. Retinal assessment using optical coherence tomography. Prog Retin Eye Res 2006; 25: 325–353.
  • Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, Tafreshi A, Zangwill LM. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 2006; 142: 576–582.
  • Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004; 137: 156–169.
  • Shields CL, Materin MA, Shields JA. Review of optical coherence tomography for intraocular tumors. Curr Opin Ophthalmol 2005; 16: 141–154.
  • Baumal CR. Clinical applications of optical coherence tomography. Curr Opin Ophthalmol 1999; 10: 182–188.
  • Schuman JS, Puliafito CA, Fujimoto JG. Optical Coherence Tomography of Ocular Diseases, 2nd ed. Thorofare, NJ: Slack Inc, 2004.
  • Drexler W. Ultrahigh‐resolution optical coherence tomography. J Biomed Opt 2004; 9: 47–74.
  • Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF. Enhanced visualization of macular pathology with the use of ultrahigh‐resolution optical coherence tomography. Arch Ophthalmol 2003; 121: 695–706.
  • Zafar S, Gurses‐ozden R, Vessani R, Makornwattana M, Liebmann JM, Tello C, Ritch R. Effect of pupillary dilation on retinal nerve fiber layer thickness measurements using optical coherence tomography. J Glaucoma 2004; 13: 34–37.
  • Polito A, Del borrello M, Isola M, Zemella N, Bandello F. Repeatability and reproducibility of fast macular thickness mapping with stratus optical coherence tomography. Arch Ophthalmol 2005; 123: 1330–1337.
  • Van velthoven MEJ, Van der linden MH, De smet MD, Faber DJ, Verbraak FD. Influence of cataract on optical coherence tomography image quality and retinal thickness. Br J Ophthalmol 2006; 90: 1259–1262.
  • Savini G, Zanini M, Barboni P. Influence of pupil size and cataract on retinal nerve fiber layer thickness measurements by Stratus OCT. J Glaucoma 2006; 15: 336–340.
  • Ray R, Stinnett SS, Jaffe GJ. Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol 2005; 139: 18–29.
  • Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS. Ultrahigh resolution optical coherence tomography in non‐exudative age related macular degeneration. Br J Ophthalmol 2006; 90: 191–197.
  • Politoa A, Napolitano MC, Bandello F, Chiodini RG. The role of optical coherence tomography (OCT) in the diagnosis and management of retinal angiomatous proliferation (RAP) in patients with age‐related macular degeneration. Ann Acad Med Singapore 2006; 35: 420–424.
  • Ahlers C, Michels S, Beckendorf A, Birngruber R, Schmidt‐erfurth U. Three‐dimensional imaging of pigment epithelial detachment in age‐related macular degeneration using optical coherence tomography, retinal thickness analysis and topographic angiography. Graefe’s Arch Clin Exp Ophthalmol 2006; 244: 1233–1239.
  • Montero JA, Ruiz‐moreno JM, Tavolato M. Follow‐up of age‐related macular degeneration patients treated by photodynamic therapy with optical coherence tomography 3. Graefe’s Arch Clin Exp Ophthalmol 2003; 241: 797–802.
  • Sahni J, Stanga P, Wong D, Harding S. Optical coherence tomography in photodynamic therapy for subfoveal choroidal neovascularisation secondary to age related macular degeneration: a cross‐sectional study. Br J Ophthalmol 2005; 89: 316–320.
  • Salinas‐alaman A, Garcia‐layana A, Maldonado MJ, Sainz‐gomez C, Alvarez‐vidal A. Using optical coherence tomography to monitor photodynamic therapy in age‐related macular degeneration. Am J Ophthalmol 2005; 140: 23–28.
  • Van velthoven MEJ, De smet MD, Schlingemann RO, Magnani M, Verbraak FD. Added value of OCT in evaluating the presence of leakage in patients with age‐related macular degeneration treated with PDT. Graefe’s Arch Clin Exp Ophthalmol 2006; 244: 1119–1123.
  • Van de moere A, Sandhu SS, Talks SJ. Correlation of optical coherence tomography and fundus fluorescein angiography following photodynamic therapy for choroidal neovascular membranes. Br J Ophthalmol 2006; 90: 304–306.
  • Ozdemir H, Karacorlu SA, Karacorlu M. Early optical coherence tomography changes after photodynamic therapy in patients with age‐related macular degeneration. Am J Ophthalmol 2006; 141: 574–576.
  • Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age‐related macular degeneration. Ophthalmology 2006; 113: 363–372.
  • Rich RM, Rosenfeld PJ, Puliafito CA, Dubovy SR, Davis JL, Flynn HW Jr, Gonzalez S, Feuer WJ, Lin RC, Lalwani GA, Nguyen JK, Kumar G. Short‐term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular age‐related macular degeneration. Retina 2006; 26: 495–511.
  • Montero JA, Ruiz‐moreno JM. Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy. Br J Ophthalmol 2005; 89: 562–564.
  • Markomichelakis NN, Halkiadakis I, Pantelia E, Peponis V, Patelis A, Theodossiadis P, Theodossiadis P, Theodossiadis G. Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence tomography. Ophthalmology 2004; 111: 946–953.
  • Freeman G, Matos K, Pavesio CE. Cystoid macular oedema in uveitis: an unsolved problem. Eye 2001; 15: 12–17.
  • Lerche RC, Schaudig U, Scholz F, Walter A, Richard G. Structural changes of the retina in retinal vein occlusion–imaging and quantification with optical coherence tomography. Ophthalmic Surg Lasers 2001; 32: 272–280.
  • Ching HY, Wong AC, Wong CC, Woo DC, Chan CW. Cystoid macular oedema and changes in retinal thickness after phacoemulsification with optical coherence tomography. Eye 2006; 20: 297–303.
  • Goatman KA. A reference standard for the measurement of macular oedema. Br J Ophthalmol 2006; 90: 1197–1202.
  • Goebel W, Franke R. Retinal thickness in diabetic retinopathy: comparison of optical coherence tomography, the retinal thickness analyzer, and fundus photography. Retina 2006; 26: 49–57.
  • Antcliff RJ, Stanford MR, Chauhan DS, Graham EM, Spalton DJ, Shilling JS, Ffytche TJ, Marshall J. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology 2000; 107: 593–599.
  • Ozdek SC, Erdinç MA, Gürelik G, Aydin B, Bahçeci U, Hasanreisoglu B. Optical coherence tomographic assessment of diabetic macular edema: comparison with fluorescein angiographic and clinical findings. Ophthalmologica 2005; 219: 86–92.
  • Browning DJ, Mcowen MD, Bowen RM Jr, O’marah TL. Comparison of the clinical diagnosis of diabetic macular oedema with diagnosis by optical coherence tomography. Ophthalmology 2004; 111: 712–715.
  • Strøm C, Sander B, Larsen N, Larsen M, Lund‐andersen H. Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 2002; 43: 241–245.
  • Moreira RO, Trujillo FR, Meirelles RMR, Ellinger VC, Zagury L. Use of optical coherence tomography (OCT) and indirect ophthalmoscopy in the diagnosis of macular oedema in diabetic patients. Int Ophthalmol 2001; 24: 331–336.
  • Schaudig UH, Glaefke C, Scholz F, Richard G. Optical coherence tomography for retinal thickness measurement in diabetic patients without clinically significant macular oedema. Ophthalmic Surg Lasers 2000; 31: 182–186.
  • Chan A, Duker JS. A standardized method for reporting changes in macular thickening using optical coherence tomography. Arch Ophthalmol 2005; 123: 939–943.
  • Massin P, Duguid G, Erginay A, Haouchine B, Gaudric A. Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy. Am J Ophthalmol 2003; 135: 169–177.
  • Yamamoto T, Hitani K, Tsukahara I, Yamamoto S, Kawasaki R, Yamashita H, Takeuchi S. Early postoperative retinal thickness changes and complications after vitrectomy for diabetic macular edema. Am J Ophthalmol 2003; 135: 14–19.
  • Benson SE, Schlottmann PG, Bunce C, Xing W, Charteris DG. Optical coherence tomography analysis of the macula after scleral buckle surgery for retinal detachment. Ophthalmology 2006: Nov 6; [Epub ahead of print.
  • Benson SE, Schlottmann PG, Bunce C, Xing W, Charteris DG. Optical coherence tomography analysis of the macula after vitrectomy surgery for retinal detachment. Ophthalmology 2006; 113: 1179–1183.
  • Azzolini C, Patelli F, Codenotti M, Pierro L, Brancato R. Optical coherence tomography in idiopathic epiretinal macular membrane surgery. Eur J Ophthalmol 1999; 9: 206–211.
  • Johnson MW. Tractional cystoid macular edema: a subtle variant of the vitreomacular traction syndrome. Am J Ophthalmol 2005; 140: 184–192.
  • Yamada, N, Kishi S. Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol 2005;139: 112–117.
  • Johnson MW. Improvements in the understanding and treatment of macular hole. Curr Opin Ophthalmol 2002; 13: 152–160.
  • Gass JDM. Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 1995; 119: 752–759.
  • Gass JDM. Idiopathic senile macular hole: its early stages and pathogenesis. Arch Ophthalmol 1988; 106: 629–639.
  • Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Schuman JS, Swanson EA, Fujimoto JG. Optical coherence tomography of macular holes. Ophthalmology 1995; 102: 748–756.
  • Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A. Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol 1999; 117: 744–751.
  • Haouchine B, Massin P, Gaudric A. Foveal pseudocyst as the first step in macular hole formation: a prospective study by optical coherence tomography. Ophthalmology 2001; 108: 15–22.
  • Glacet‐bernard A, Jourdani A, Perrenoud F, Coscas G, Soubrane G. Stage 3 macular hole: role of optical coherence tomography and of B‐scan ultrasonography. Am J Ophthalmol 2005; 139: 814–819.
  • Ansari H, Rodriguez‐coleman H, Langton K, Chang S. Spontaneous resolution of bilateral stage 1 macular holes documented by optical coherence tomography. Am J Ophthalmol 2002; 134: 447–449.
  • Oehrens AM, Stalmans P. Optical coherence tomographic documentation of the formation of a traumatic macular hole. Am J Ophthalmol 2006; 142: 866–869.
  • Takahashi H, Kishi S. Optical coherence tomography images of spontaneous macular hole closure. Am J Ophthalmol 1999; 128: 519–520.
  • Gross JG. Late reopening and spontaneous closure of previously repaired macular holes. Am J Ophthalmol 2005; 140: 556–558.
  • Ip M, Baker BJ, Duker JS, Reichel E, Baumal CR, Gangnon R, Puliafito CA. Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch Ophthalmol 2002; 120: 29–35.
  • Sato H, Kawasaki R, Yamashita H. Observation of idiopathic full‐thickness macular hole closure in early postoperative period as evaluated by optical coherence tomography. Am J Ophthalmol 2003; 136: 185–187.
  • Apostolopoulos MN, Koutsandrea CN, Moschos MN, Alonistiotis DA, Papaspyrou AE, Mallias JA, Kyriaki TE, Theodossiadis PG, Theodossiadis GP. Evaluation of successful macular hole surgery by optical coherence tomography and multifocal electroretinography. Am J Ophthalmol 2002; 134: 667–674.
  • Witkin AJ, Ko TH, Fujimoto JG, Schuman JS, Baumal CR, Rogers AH, Reichel E, Duker JS. Redefining lamellar holes and the vitreomacular interface: an ultrahigh‐resolution optical coherence tomography study. Ophthalmology 2006; 113: 388–397.
  • Haouchine B, Massin P, Tadayoni R, Erginay A, Gaudric A. Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol 2004; 138: 732–739.
  • Chen JC, Lee LR. Solar retinopathy and associated optical coherence tomography findings. Clin Exp Optom 2004; 87: 390–393.
  • Schatz P, Eriksson U, Ponjavic V, Andréasson S. Multifocal electroretinography and optical coherence tomography in two patients with solar retinopathy. Acta Ophthalmol Scand 2004; 82: 476–480.
  • Jorge R, Costa RA, Quirino LS, Paques MW, Calucci D, Cardillo JA, Scott IU. Optical coherence tomography findings in patients with late solar retinopathy. Am J Ophthalmol 2004; 137: 1139–1143.
  • Codenotti M, Patelli F, Brancato R. OCT findings in patients with retinopathy after watching a solar eclipse. Ophthalmologica 2002; 216: 463–466.
  • Hirakata A, Hida T, Ogasawara A, Iizuka N. Multilayered retinoschisis associated with optic disc pit. Jpn J Ophthalmol 2005; 49: 414–416.
  • Ishikawa K, Terasaki H, Mori M, Sugita K, Miyake Y. Optical coherence tomography before and after vitrectomy with internal limiting membrane removal in a child with optic disc pit maculopathy. Jpn J Ophthalmol 2005; 49: 411–413.
  • Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 2006; 47: 2006–2010.
  • Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139: 39–43.
  • Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139: 44–55.
  • Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter HM, Pedut‐kloizman T, Fujimoto JG, Mattox C. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110: 177–189.
  • Kanadani FN, Hood DC, Grippo TM, Wangsupadilok B, Harizman N, Greenstein VC, Liebmann JM, Ritch R. Structural and functional assessment of the macular region in patients with glaucoma. Brit J Ophthalmol 2006; 90: 1393–1397.
  • Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG, Mattox C. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol. 2003; 135: 838–843.
  • Budenz DL, Michael A, Chang RT, Mcsoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112: 3–9.
  • Asaoka R, Ishii R, Kyu N, Hotta Y, Sato M. Early detection of thinning of retinal nerve fiber layer in glaucomatous eyes by optical coherence tomography 3000: analysis of retinal nerve fiber layer corresponding to the preserved hemivisual field. Ophthalmic Res 2006; 38: 29–35.
  • Kaushik S, Gyatsho J, Jain R, Pandav SS, Gupta A. Correlation between retinal nerve fiber layer thickness and central corneal thickness in patients with ocular hypertension: an optical coherence tomography study. Am J Ophthalmol 2006; 141: 884–890.
  • Chen HY, Wang TH, Lee YM, Hung TJ. Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc 2005; 104: 927–934.
  • Leung CKS, Chan WM, Yung WH, Ng ACK, Woo J, Tsang MK, Tse RK. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 2005; 112: 391–400.
  • Pieroth L, Schuman JS, Hertzmark E, Hee MR, Wilkins JR, Coker J, Mattox C, Pedut‐kloizman R, Puliafito CA, Fujimoto JG, Swanson E. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology 1999; 106: 570–579.
  • Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut‐kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113: 586–596.
  • Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR, Sample PA, Weinreb RN. Structure‐function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47: 2889–2895.
  • Mastropasqua L, Brusini P, Carpineto P, Ciancaglini M, Di antonio L, Zeppieri MW, Parisi L. Humphrey matrix frequency doubling technology perimetry and optical coherence tomography measurement of the retinal nerve fiber layer thickness in both normal and ocular hypertensive subjects. J Glaucoma 2006; 15: 328–335.
  • Sánchez‐galeana CA, Bowd C, Zangwill LM, Sample PA, Weinreb RN. Short‐wavelength automated perimetry results are correlated with optical coherence tomography retinal nerve fiber layer thickness measurements in glaucomatous eyes. Ophthalmology 2004; 111: 1866–1872.
  • Melo GB, Libera RD, Barbosa AS, Pereira LMG, Doi LM, Melo LAS Jr. Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol 2006; 142: 858–860.
  • Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004; 122: 827–837.
  • Kanamori A, Nagai‐kusuhara A, Escaño MF, Maeda H, Nakamura M, Negi A. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefe’s Arch Clin Exp Ophthalmol 2006; 244: 58–68.
  • Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand 2006; 84: 650–655.
  • Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk. Am J Ophthalmol 2006; 142: 475–482.
  • Hendicott P, Lam CSY. Myopic crescent, refractive error and axial length in Chinese eyes. Clin Exp Optom 1991; 74: 168–174.
  • Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eyes. Am J Ophthalmol 1971; 71: 42–53.
  • Logan NS, Gilmartin B, Wildsoet CF, Dunne MCM. Posterior retinal contour in adult human anisomyopia. Invest Ophthalmol Vis Sci 2004; 45: 2152–2162.
  • Kremser B, Troger J, Baltaci M, Kralinger M, Kieselbach GF. Retinal thickness analysis in subjects with different refractive conditions. Ophthalmologica 1999; 213: 376–379.
  • Kawabata H, Adachi‐usami E. Multifocal electroretinogram in myopia. Invest Ophthalmol Vis Sci 1997; 38: 2844–2851.
  • Luo HD, Gazzard G, Fong A, Aung T, Hoh ST, Loon SC, Healey P, Tan DT, Wong TY, Saw SM. Myopia, axial length, and OCT characteristics of the macula in Singaporean children. Invest Ophthalmol Vis Sci 2006; 47: 2773–2781.
  • Mrugacz M, Bakunowicz‐lazarczyk A, Sredzinska‐kita D. Use of optical coherence tomography in myopia. Journal of Pediatric Ophthalmology and Strabismus 2004; 41: 159–162.
  • Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 2003; 23: 177–182.
  • Lim MCC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SKL, Aung T. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005; 46: 974–978.
  • Karacorlu SA, Ozdemir H, Senturk F, Karacorlu M. Optical coherence tomography after photodynamic therapy for patients with pathologic myopia. Retina 2006; 26: 752–756.
  • García‐layana, A, Salinas‐alamán A, Maldonado MJ, Sainz‐gómez C, Fernández‐hortelano A. Optical coherence tomography to monitor photodynamic therapy in pathological myopia. Br J Ophthalmol 2006; 90: 555–558.
  • Benhamou N, Massin P, Haouchine B, Erginay A, Gaudric A. Macular retinoschisis in highly myopic eyes. Am J Ophthalmol 2002; 133: 794–800.
  • Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I, Drexler W, Wollstein G, Ishikawa H, Duker JS. Comparison of ultrahigh‐ and standard‐resolution optical coherence tomography for imaging macular pathology. Ophthalmology 2005; 112:1922.
  • Paunescu LA, Ko TH, Duker JS, Chan A, Drexler W, Schuman JS, Fujimoto JG. Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh‐resolution optical coherence tomography. Ophthalmology 2006; 113: 48–57.
  • Wollstein G, Paunescu LA, Ko TH, Fujimoto JG, Kowalevicz A, Hartl I, Beaton S, Ishikawa H, Mattox C, Singh O, Duker J, Drexler W, Schuman JS. Ultrahigh‐resolution optical coherence tomography in glaucoma. Ophthalmology 2005; 112: 229–237.
  • Ergun E, Hermann B, Wirtitsch M, Unterhuber A, Ko TH, Sattmann H, Scholda C, Fujimoto JG, Stur M, Drexler W. Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh‐resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 310–316.
  • Chan A, Duker JS, Ishikawa H, Ko TH, Schuman JS, Fujimoto JG. Quantification of photoreceptor layer thickness in normal eyes using optical coherence tomography. Retina 2006; 26: 655–660.
  • Chen TC, Cense B, Pierce MC, Nassif N, Park BH, Yun SH, White BR, Bouma BE, Tearney GJ, De boer JF. Spectral domain optical coherence tomography: ultra‐high speed, ultra‐high resolution ophthalmic imaging. Arch Ophthalmol 2005; 123: 1715–1720.
  • Wojtkowski M, Bajraszewski T, Gorczynska I, Targowski P, Kowalczyk A, Wasilewski W, Radzewicz C. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 2004; 138: 412–419.
  • Choma MA, Sarunic MV, Yang CH, Izatt JA. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 2003; 11: 2183–2189.
  • Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier domain vs. time domain optical coherence tomography. Op Express 2003; 11: 889–894.
  • Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, Tearney GJ, De boer JF. In vivo human retinal imaging by ultrahigh‐speed spectral domain optical coherence tomography. Opt Lett 2004; 29: 480–482.
  • Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three‐dimensional retinal imaging with high‐speed ultrahigh‐resolution optical coherence tomography. Ophthalmology 2005; 112: 1734–1746.
  • Srinivasan, VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. High‐definition and 3‐dimensional imaging of macular pathologies with high‐speed ultrahigh‐resolution optical coherence tomography. Ophthalmology 2006; 113: 2054.e1–14.
  • Podoleanu AG, Dobre GM, Cucu RG, Rosen R, Garcia P, Nieto J, Will D, Gentile R, Muldoon T, Walsh J, Yannuzzi LA, Fisher Y, Orlock D, Weitz R, Rogers JA, Dunne S, Boxer A. Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. J Biomed Opt 2004; 9: 86–93.
  • Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high‐speed optical coherence tomography. Ophthalmology 2006; 113: 799.e1–2.
  • Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci 2006; 83: 360–365.
  • Muscat S, Mckay N, Parks S, Kemp E, Keating D. Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography. Invest Ophthalmol Vis Sci 2002; 43: 1791–1795.
  • Avila M, Li Y, Song JC, Huang D. High‐speed optical coherence tomography for management after laser in situ keratomileusis. J Cataract Refract Surg 2006; 32: 1836–1842.
  • Tang M, Li Y, Avila M, Huang D. Measuring total corneal power before and after laser in situ keratomileusis with high‐speed optical coherence tomography. J Cataract Refract Surg 2006; 32: 1843–1850.
  • Wang J, Thomas J, Cox I. Corneal light backscatter measured by optical coherence tomography after LASIK. J Refract Surg 2006; 22: 604–610.
  • Leung CK, Chan WM, Ko CY, Chui SI, Woo J, Tsang MK, Tse RK. Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology 2005; 112: 980–984.
  • Müller M, Dahmen G, Pörksen E, Geerling G, Laqua H, Ziegler A, Hoerauf H. Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg 2006; 32: 1803–1808.
  • Goldsmith JA, Li Y, Chalita MR, Westphal V, Patil CA, Rollins AM, Izatt JA, Huang D. Anterior chamber width measurement by high‐speed optical coherence tomography. Ophthalmology 2005; 112: 238–244.
  • Chalita MR, Li Y, Smith S, Patil C, Westphal V, Rollins AM, Izatt JA, Huang D. High‐speed optical coherence tomography of laser iridotomy. Am J Ophthalmol 2005; 140: 1133–1136.
  • Radhakrishnan S, Goldsmith J, Huang D, Westphal V, Dueker DK, Rollins AM, Izatt JA, Smith SD. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol 2005; 123: 1053–1059.
  • Baikoff G, Jitsuo jodai H, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J Cataract Refract Surg 2005; 31: 1722–1728.
  • Lai MM, Tang M, Andrade EMM, Li Y, Khurana RN, Song JC, Huang D. Optical coherence tomography to assess intrastromal corneal ring segment depth in keratoconic eyes. J Cataract Refract Surg 2006; 32: 1860–1865.
  • Kohnen T, Thomala MC, Cichocki M, Strenger A. Internal anterior chamber diameter using optical coherence tomography compared with white‐to‐white distances using automated measurements. J Cataract Refract Sur. 2006; 32: 1809–1813.
  • Baïkoff G. Anterior segment OCT and phakic intraocular lenses: a perspective. J Cataract Refract Surg 2006; 32: 1827–1835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.