57
Views
4
CrossRef citations to date
0
Altmetric
Commentary

When is glaucoma really glaucoma?

, BSci MB BS MMed (Ophthalmol) FRANZCO
Pages 376-385 | Received 05 Mar 2007, Accepted 29 Apr 2007, Published online: 15 Apr 2021

REFERENCES

  • Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark A F, Nystuen A, Nichols BE, Mackey DA, Ritch R, Kalenak JW, Craven ER, Sheffield VC. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275: 668–670.
  • Shimizu S, Lichter PR, Johnson AT, Zhou Z, Higashi M, Gottfredsdottir M, Othman M, Moroi SE, Rozsa FW, Schertzer RW, Clarke MS, Schwartz AL, Downs CA, Vollrath D, Richards JE. Age‐dependent prevalence of mutations at the GLC1A locus in primary open‐angle glaucoma. Am J Ophthalmol 2000; 130: 165–177.
  • Adam MF, Belmouden A, Binisti P, Brézin AP, Valtot F, Béchetoille A, Dascotte JC, Copin B, Gomez L, Chaventré A, Bach JF, Garchon HJ. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin‐homology domain of TIGR in familial open‐angle glaucoma. Hum Mol Genet 1997; 6: 2091–2097.
  • Langman MJS, Lancashire RJ, Cheng KK, Stewart PM. Systemic hypertension and glaucoma: mechanisms in common and co‐occurrence. Br J Ophthalmol 2005; 89: 960–963.
  • Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: The Egna‐Neumarkt Study. Ophthalmology 2000; 107: 1287–1293.
  • Mitchell P, Smith W, Chey T, Healy PR. Open‐angle glaucoma and diabetes: the Blue Mountains Eye Study. Ophthalmology 1997; 104: 712–718.
  • Tielsch JM, Katz J, Quigley HA, Javitt JC, Sommer A. Diabetes, intraocular pressure, and primary open‐angle glaucoma in the Baltimore Eye Survey. Ophthalmology 1995; 102: 48–53.
  • Cursiefen C, Wisse M, Cursiefen S, Jünemann A, Martus P, Korth M. Migraine and tension headache in high‐pressure and normal‐pressure glaucoma. Am J Ophthalmol 2000; 129: 102–104.
  • Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol 1998; 82: 862–870.
  • Sergi M, Salerno DE, Rizzi, M, Blini M, Andreoli A, Messenio D, Pecis M, Bertoni G. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma 2007; 16: 42–46.
  • Doughty MJ. Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta‐analysis approach. Surv Ophthalmol 2000; 44: 367–408.
  • Schwartz JT. Methodologic differences and measurement of cup‐disc ratio: an epidemiologic assessment. Arch Ophthalmol 1976; 94: 1101–1105.
  • Wood CM, Bosanquet RC. Limitations of direct ophthalmoscopy in screening for glaucoma. BMJ 1987; 294: 1587–1588.
  • Quigley HA, Brown AE, Morrison JD, Drance SM. The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 1990; 108: 51–57.
  • Jonas JB, Gusek GC, Naumann GOH. Optic disc, cup and neuroretinal rim size, configuration, and correlations in normal eyes. Invest Ophthalmol Vis Sci 1988; 29: 1151–1158.
  • Jonas JB, Gusek GC, Guggenmoos‐holzmann I, Naumann GO. Size of the optic nerve scleral canal and comparison with intravital determination of optic disc dimensions. Graefes Arch Clin Exp Ophthalmol 1988; 226: 213–215.
  • Mansour AM. Racial variation of optic disc size. Ophthalmic Res 1991; 23: 67–72.
  • Wang Y, Xu L, Zhang L, Yang H, Ma Y, Jonas JB. Optic disc size in a population based study in northern China: the Beijing Eye Study. Br J Ophthalmol 2006; 90: 353–356.
  • Jonas JB, Schmidt AM, Muller‐bergh JA, Schlotzer‐schrehardt UM, Naumann GOH. Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 1992; 33: 2012–2018.
  • Fingeret M, Medeiros F, Susanna R, Weinreb R. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. J Am Optom Assoc 2005; 76: 661–668.
  • Siamak AS, Michael S. Magnification characteristic of a 90‐diopter double‐aspheric fundus examination lens. Invest Ophthalmol Vis Sci 2002; 43: 1817–1819.
  • Ansari–shahrezaei S, Noemi Maar, Biowski R, Stur M. Biomicroscopic measurement of the optic disc with a high‐power positive lens. Invest Ophthalmol Vis Sci 2001; 42: 153–157.
  • Jonas JB, Mardin CY, Schlotzer‐schrehardt U, Naumann GO. Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci 1991; 32: 401–405.
  • Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 1988; 29: 1151–1158.
  • Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc‐field correlations. Trans Am Acad Ophthalmol Otolaryngol 1974; 78: 255–274.
  • Spaeth GL, Hitchings RA, Sivalingam E. The optic disc in glaucoma: pathogenetic correlation of five patterns of cupping in chronic open‐angle glaucoma. Trans Am Acad Ophthalmol Otolaryngol 1976; 81: 217–223.
  • Drance SM. Disc hemorrhages in the glaucomas. Surv Ophthalmol 1989; 33: 331–337.
  • Drance SM, Fairclough M, Butler DM, Kottler MS. The importance of disc hemorrhage in the prognosis of chronic open angle glaucoma. Arch Ophthalmol 1977; 95: 226–228.
  • Miyake T, Sawada A, Yamamoto T, Miyake K, Sugiyama K, Kitazawa Y. Incidence of disc hemorrhages in open‐angle glaucoma before and after trabeculectomy. J Glaucoma 2006; 15: 164–171.
  • Ishida K. Disk hemorrhage is a significantly negative prognostic factor in normal‐tension glaucoma. Am J Ophthalmol 2000; 129: 707–714.
  • Kim S, Park K. The Relationship between recurrent optic disc hemorrhage and glaucoma progression. Ophthalmology 2006; 113: 598–602.
  • Airaksinen PJ. Are optic disc haemorrhages a common finding in all glaucoma patients? Acta Ophthalmol Scand 1984; 62: 193–196.
  • Jonas JB, Konigsreuther KA, Naumann GOH. Histomorphometry of the parapapillary region in glaucomatous and normal human eyes. Invest Ophthalmol Vis Sci 1990; 31(Suppl): 456.
  • Heijl A, Samander C. Peripapillary atrophy and glaucomatous visual field defects. Doc Ophthalmol Proc Series 1985; 42: 403.
  • Vongphanit J, Mitchell P, Wang JJ. Population prevalence of tilted optic disks and the relationship of this sign to refractive error. Am J Ophthalmol 2002; 133: 679–685.
  • Stürmer J, Schroedel C, Rappl W. Low‐background‐brightness, static SLO fundus‐perimetry. Invest Ophthalmol Vis Sci 1990; 31(Suppl): 504.
  • Jonas JB, Gusek GC, Fernández MC. Correlation of the blind spot size to the area of the optic disc and parapapillary atrophy. Am J Ophthalmol 1991; 111: 559–565.
  • Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 1989; 30: 919.
  • Uchida H, Ugurlu S, Caprioli J. Increasing peripapillary atrophy is associated with progressive glaucoma. Ophthalmology 1998; 105: 1541–1545.
  • Jonas JB, Gründler AE. Optic disc morphology in ‘age‐related atrophic glaucoma. Graefes Arch Clin Exp Ophthalmol 1996; 234: 744–749.
  • Jonas JB, Budde WM, Lang PJ. Parapapillary atrophy in the chronic open‐angle glaucomas. Graefes Arch Clin Exp Ophthalmol 1999; 237: 793–797.
  • Rath EZ, Rehany U, Linn S, Rumelt S. Correlation between optic disc atrophy and aetiology: anterior ischaemic optic neuropathy vs optic neuritis. Eye 2003; 17: 1019–1024.
  • Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology 1993; 100: 587–597.
  • Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol Vis Sci 1973; 12: 814–829.
  • Dandona L, Quigley HA, Jampel HD. Reliability of optic nerve head topographic measurements with computerized image analysis. Am J Ophthalmol 1989; 108: 414–421.
  • The AGIS Investigators: The Advanced Glaucoma Intervention Study (AGIS): 7. The relation between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 2000, 130: 429–440.
  • Anonymous. The effectiveness of intraocular pressure reduction in the treatment of normal‐tension glaucoma. Collaborative Normal‐Tension Glaucoma Study Group. Am J Ophthalmol 1998; 126: 498–505.
  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO. The Ocular Hypertension Treatment Study. A randomized trial determines that topical ocular hypertensive medication delays or prevents the onset of primary open‐angle glaucoma. Arch Ophthalmol 2002; 120: 701–713.
  • Lichter PR, Musch DC, Gillespie BW, Guire KE, Janz NK, Wren PA, Mills RP, Cigts study group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001; 108: 1943–1953.
  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M for the Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002; 120: 1268–1279.
  • Tielsch JM, Katz J, Singh K, Quigley HA, Gottsch JD, Javitt J, Sommer A. A population‐based evaluation of glaucoma screening: the Baltimore Eye Survey. Am J Epidemiol 1991; 134: 1102–1110.
  • Thorburn W. The accuracy of clinical applanation tonometry. Acta Ophthalmol Scand 1978; 56: 1–5.
  • Hansen MK. Clinical comparison of the XPERT non‐contact tonometer and the conventional Goldmann applanation tonometer. Acta Ophthalmol Scand 1995; 73: 176–180.
  • Parker VA, Herrtage J, Sarkies NJ. Clinical comparison of the Keeler Pulsair 3000 with Goldmann applanation tonometry. Br J Ophthalmol 2001; 85: 1303–1304.
  • Jorge J, Diaz‐rey JA, Gonzalez‐meijome JM, Almeida JB, Parafita MA. Clinical performance of the Reichert AT550: a new non‐contact tonometer. Ophthalmic Physiol Opt 2002; 22: 560–564.
  • Jorge J, Gonzalez‐meijome JM, Diaz‐rey JA, Almeida JB, Parafita MA. Clinical performance of non‐contact tonometry by Reichert AT550 in glaucomatous patients. Ophthalmic Physiol Opt 2003; 23: 503–506.
  • Mackie SW, Jay JL, Ackerley R, Walsh G. Clinical comparison of the Keeler Pulsair 2000, American Optical Mk II and Goldmann applanation tonometers. Ophthalmic Physiol Opt 1996; 16: 171–177.
  • Kretz G, Demailly P. X‐PERT NCT advanced logic tonometer valuation. Int Ophthalmol 1992; 16: 287–290.
  • Tonnu PA, Ho T, Sharma K, White E, Bunce C, Garway‐heath D. A comparison of four methods of tonometry: method agreement and interobserver variability. Br J Ophthalmol 2005; 89: 847–850.
  • Brandt JD, Beiser JA, Kass MA, Gordon MO. Central corneal thickness in the Ocular Hypertension Treatment Study. Ophthalmology 2001; 108: 1779–1788.
  • Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA. The Ocular Hypertension Treatment Study: baseline factors that predict the onset. Ophthalmology 2002; 120: 714–720.
  • Kohlhaas M, Boehm AG, Spoerl E, Pursten A, Grein HJ, Pillunat LE. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch Ophthalmol 2006; 124: 471–476.
  • Tonnu PA, Ho T, Newson T, Sheikh AE, Sharma K, White E, Bunce C, Garway‐heath D. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non‐contact tonometry, the Tono‐Pen XL, and Goldmann applanation tonometry. Br J Ophthalmol 2005; 89: 851–854.
  • Morgan AJ, Harper J, Hosking SL, Gilmartin B. The effect of corneal thickness and corneal curvature on pneumatonometer measurements. Curr Eye Res 2002; 25: 107–112.
  • Ko YC, Liu CL, Hsu WM. Varying Effects of corneal thickness on intraocular pressure measurements with different tonometers. Eye 2005; 19: 327–332.
  • Harwerth RS, Carter‐dawson L, Shen F, Smith EL, Crawford MLJ. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 1999; 40: 2242–2250.
  • Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucomatous eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41: 741–748.
  • Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magno‐cellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 2000; 118: 378–384.
  • Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno‐, parvo‐ and koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Ret Eye Res 2003; 22: 465–481.
  • Johnson CA. Selective versus nonselective losses in glaucoma. J Glaucoma 1994: 3(Suppl): S32–S44.
  • Sánchez‐galeana CA, Bowd C, Zangwill LM, Sample PA, Robert N, Weinreb MD. Short‐wavelength automated perimetry results are correlated with optical coherence tomography retinal nerve fiber layer thickness measurements in glaucomatous eyes. Ophthalmology 2004; 111: 1866–1872.
  • Moss ID, Wild JM, Whitaker DJ. The influence of age‐related cataract on blue‐on‐yellow perimetry. Invest Ophthalmol Vis Sci 1995; 36: 764–773.
  • Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez‐galeana C, Boswor CF, Sample PA, Weinreb RN. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001; 42: 1993–2003.
  • Keltner JL, Johnson CA, Quigg JM, Cello KE, Kass MA, Gordon MO. Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study. Ocular Hypertension Treatment Study Group. Arch Ophthalmol 2000; 118: 1187–1194.
  • Henson DB, Chaudry S, Artes PH, Faragher EB, Ansons A. Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci 2000; 41: 417–421
  • Wall M, Kutzko KE, Chauhan BC. Variability in patients with glaucomatous visual field damage is reduced using size V stimuli. Invest Ophthalmol Vis Sci 1997; 38: 426–435.
  • Keltner JL, Johnson CA, Cello KE, Edwards MA, Bandermann SE, Kass MA, Gordon MO and the Ocular Hypertension Treatment Study Group. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol 2003; 121: 643–650.
  • Johnson CA, Cioffi GA, Liebmann JR, Weinreb RN, Sample PA, Zangwill L. The relationship between structural and functional alterations in glaucoma: A review. Semin Ophthalmol 2000; 15: 221–233.
  • Shah NN, Bowd C, Medeiros FA, Weinreb RN, Sample PA, Hoffmann EM, Zangwill LM. Combining structural and functional testing for detection of glaucoma. Ophthalmology 2006; 113: 1593–1602.
  • Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN. Visual function‐specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41: 1783–1790.
  • Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA. Clinically detectable nerve fiber layer atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991; 109: 77–83.
  • Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR, Sample PA, Weinreb RN. Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47: 2889–2895.
  • Greenfield DS. Optic nerve and retinal nerve fibre layer analyzers in glaucoma. Curr Opin Ophthalmol 2002; 13: 68–76.
  • Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004; 122: 827–837.
  • Harasymowycz PJ, Papamatheakis DG, Fansi AK, Gresset J, Lesk MR. Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg retina tomograph II) in high‐risk populations: a pilot study. Ophthalmology 2005; 112: 2164–2171.
  • Kwartz AJ, Henson DB, Harper RA, Spencer AF, Mcleod D. The effectiveness of the Heidelberg retina tomograph and laser diagnostic glaucoma scanning system (GDx) in detecting and monitoring glaucoma. Health Technol Assess 2005; 9: 1–148.
  • Budenz DL, Michael A, Chang RT, Mcsoley J, Katz J. Sensitivity and specificity of the Stratus OCT for perimetric glaucoma. Ophthalmology 2005; 112: 3–9.
  • Chen HY, Huang ML. Discrimination between normal and glaucomatous eyes using Stratus optical coherence tomography in Taiwan Chinese subjects. Graefes Arch Clin Exp Ophthalmol 2005; 243: 894–902.
  • Leung CK, Chan WM, Hui YL, Yung WH, Woo J, Tsang MK, Tse KK. Analysis of retinal nerve fibre layer and optic disc in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 891–899.
  • Mardin CY, Horn FK, Jonas JB, Budde WM. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol 1999; 83: 299–304.
  • Zangwill LM, Chan K, Bowd C, Hao J, Lee TW, Weinreb RN, Sejnowski TJ, Goldbaum MH. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 2004; 45: 3144–3151.
  • Reus NJ, Lemij HG. The relationship between standard automated perimetry and GDx VCC measurements. Invest Ophthalmol Vis Sci 2004; 45: 840–845.
  • Iacono P, Da pozzo S, Fuser M, Marchesan R, Ravalico G. Intersession reproducibility of retinal nerve fibre layer thickness measurements by GDx‐VCC in healthy and glaucomatous eyes. Ophthalmologica 2006; 220: 266–271.
  • Mohammadi K, Bowd C, Weinreb RN, Medeiros F, Sample P, Zangwill L. Retinal nerve fibre layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138: 592–601.
  • Gunvant P, Zheng Y, Essock E, Chen P, Greenfield D, Bagga H, Boehm MD. Predicting subsequent visual field loss in glaucomatous subjects with disc hemorrhage using retinal nerve fibre layer polarimetry. J Glaucoma 2005; 14: 20–25.
  • Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Weinreb R. Evaluation of retinal nerve fibre layer, optic disc and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139: 44–55.
  • Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139: 39–43.
  • Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012–2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.