57
Views
32
CrossRef citations to date
0
Altmetric
Reviews

A review of current approaches to identifying human genes involved in myopia

, BSc(Hons), , PhD MCOptom FAAO & , MPhil PhD FIBMS
Pages 4-22 | Received 13 Mar 2007, Accepted 17 May 2007, Published online: 15 Apr 2021

REFERENCES

  • Hofman A, Grobbee DE, De jong PT, Van den ouweland FA. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 1991; 7: 403–422.
  • Wang Q, Klein BE, Klein R, Moss SE. Refractive status in the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 1994; 35: 4344–4347.
  • Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci 1997; 38: 334–340.
  • Attebo K, Ivers RQ, Mitchell P. Refractive errors in an older population: the Blue Mountains Eye Study. Ophthalmology 1999; 106: 1066–1072.
  • Wensor M, Mccarty CA, Taylor HR. Prevalence and risk factors of myopia in Victoria, Australia. Arch Ophthalmol 1999; 117: 658–663.
  • Munoz B, West SK, Rodriguez J, Sanchez R, Broman AT, Snyder R, Klein R. Blindness, visual impairment and the problem of uncorrected refractive error in a Mexican‐American population: Proyecto VER. Invest Ophthalmol Vis Sci 2002; 43: 608–614.
  • Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O’colmain BJ. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 2004; 122: 495–505.
  • Goh WS, Lam CS. Changes in refractive trends and optical components of Hong Kong Chinese aged 19–39 years. Ophthalmic Physiol Opt 1994; 14: 378–382.
  • Lin LL, Shih YF, Lee YC, Hung PT, Hou PK. Changes in ocular refraction and its components among medical students: a 5‐year longitudinal study. Optom Vis Sci 1996; 73: 495–498.
  • Lam CS, Goldschmidt E, Edwards MH. Prevalence of myopia in local and international schools in Hong Kong. Optom Vis Sci 2004; 81: 317–322.
  • Woo WW, Lim KA, Yang H, Lim XY, Liew F, Lee YS, Saw SM. Refractive errors in medical students in Singapore. Singapore Med J 2004; 45: 470–474.
  • Wildsoet CF. Structural correlates of myopia. In: Rosenfield M, Gillmartin B, eds. Myopia & Nearwork. Oxford: Butterworth Heinemann, 1998. p 31–56.
  • Wallman J. Nature and nurture of myopia. Nature 1994; 371: 201–202.
  • Mutti DO, Zadnik K, Adams Aj. Myopia. The nature versus nurture debate goes on. Invest Ophthalmol Vis Sci 1996; 37: 952–957.
  • Curtin BJ. The Myopias: Basic Science and Clinical Management. New York: Harper & Row, 1985.
  • Goss DA, Hampton MJ, Wickham MG. Selected review on genetic factors in myopia. J Am Optom Assoc 1988; 59: 875–884.
  • Yap M, Wu M, Liu ZM, Lee FL, Wang SH. Role of heredity in the genesis of myopia. Ophthalmic Physiol Opt 1993; 13: 316–319.
  • Zadnik K, Satariano WA, Mutti DO, Sholtz RI, Adams AJ. The effect of parental history of myopia on children’s eye size. JAMA 1994; 271: 1323–1327.
  • Zadnik K, Mutti DO. Myopia—a challenge to optometric research. J Am Optom Assoc 1995; 66: 145–146.
  • The Framingham Offspring Eye Study Group. Familial aggregation and prevalence of myopia in the Framingham Offspring Eye Study. Arch Ophthalmol 1996; 114: 326–332.
  • Hu DN. Twin study on myopia. Chin Med J (Engl) 1981; 94: 51–55.
  • Teikari JM. Myopia and stature. Acta Ophthalmol Scand 1987; 65: 673–676.
  • Lin LL, Chen CJ. A twin study on myopia in Chinese school children. Acta Ophthalmol Scand Suppl 1988; 185: 51–53.
  • Hammond CJ, Snieder H, Gilbert CE, Spector TD. Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci 2001; 42: 1232–1236.
  • Lyhne N, Sjolie AK, Kyvik KO, Green A. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20–45‐year‐old twins. Br J Ophthalmol 2001; 85: 1470–1476.
  • Dirani M, Chamberlain M, Shekar SN, Islam AF, Garoufalis P, Chen CY, Guymer RH, Baird PN. Heritability of refractive error and ocular biometrics: the Genes in Myopia (GEM) twin study. Invest Ophthalmol Vis Sci 2006; 47: 4756–4761.
  • Goss DA, Jackson TW. Clinical findings before the onset of myopia in youth: 4. Parental history of myopia. Optom Vis Sci 1996; 73: 279–282.
  • Liang CL, Yen E, Su JY, Liu C, Chang TY, Park N, Wu MJ, Lee S, Flynn JT, Juo SH. Impact of family history of high myopia on level and onset of myopia. Invest Ophthalmol Vis Sci 2004; 45: 3446–3452.
  • Alsbirk PH. Anterior chamber of the eye. A genetic and anthropological study in Greenland Eskimos. Hum Hered 1975; 25: 418–427.
  • Alsbirk PH. Variation and heritability of ocular dimensions. A population study among adult Greenland Eskimos. Acta Ophthalmol Scand 1977; 55: 443–456.
  • Alsbirk PH. Refraction in adult West Greenland Eskimos. A population study of spherical refractive errors, including oculometric and familial correlations. Acta Ophthalmol Scand 1979; 57: 84–95.
  • Biino G, Palmas MA, Corona C, Prodi D, Fanciulli M, Sulis R, Serra A, Fossarello M, Pirastu M. Ocular refraction: heritability and genome‐wide search for eye morphometry traits in an isolated Sardinian population. Hum Genet 2005; 116: 152–159.
  • Chen CY, Scurrah KJ, Stankovich J, Garoufalis P, Dirani M, Pertile KK, Richardson AJ, Mitchell P, Baird PN. Heritability and shared environment estimates for myopia and associated ocular biometric traits: the Genes in Myopia (GEM) family study. Hum Genet 2007; 121: 511–520.
  • Sorsby A, Leary GA. A longitudinal study of refraction and its components during growth. Spec Rep Ser Med Res Counc (GB) 1969; 309: 1–41.
  • Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–2048.
  • Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.
  • Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997; 278: 1580–1581.
  • Chakravarti A. It’s raining SNPs, hallelujah? Nat Genet 1998; 19: 216–217.
  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lander ES, et al. Large‐scale identification, mapping, and genotyping of single‐nucleotide polymorphisms in the human genome. Science 1998; 280: 1077–1082.
  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, Mcpherson JD, Gilman B, Schaffner S, Van etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange‐thomann N, Zody MC, Linton L, Lander ES, Altshuler D. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–933.
  • Schwartz M, Haim M, Skarsholm D. X‐linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq. Clin Genet 1990; 38: 281–286.
  • Young TL, Ronan SM, Drahozal LA, Wildenberg SC, Alvear AB, Oetting WS, Atwood LD, Wilkin DJ, King RA. Evidence that a locus for familial high myopia maps to chromosome 18p. Am J Hum Genet 1998; 63: 109–119.
  • Lam DS, Tam PO, Fan DS, Baum L, Leung YF, Pang CP. Familial high myopia linkage to chromosome 18p. Ophthalmologica 2003; 217: 115–118.
  • Young TL, Ronan SM, Alvear AB, Wildenberg SC, Oetting WS, Atwood LD, Wilkin DJ, King RA. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet 1998; 63: 1419–1424.
  • Farbrother JE, Kirov G, Owen MJ, Pong‐wong R, Haley CS, Guggenheim JA. Linkage analysis of the genetic loci for high myopia on 18p, 12q, and 17q in 51 U.K. Families. Invest Ophthalmol Vis Sci 2004; 45: 2879–2885.
  • Naiglin L, Gazagne C, Dallongeville F, Thalamas C, Idder A, Rascol O, Malecaze F, Calvas P. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. J Med Genet 2002; 39: 118–124.
  • Paluru P, Ronan SM, Heon E, Devoto M, Wildenberg SC, Scavello G, Holleschau A, Makitie O, Cole WG, King RA, Young TL. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Invest Ophthalmol Vis Sci 2003; 44: 1830–1836.
  • Stambolian D, Ibay G, Reider L, Dana D, Moy C, Schlifka M, Holmes T, Ciner E, Bailey‐wilson JE. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet 2004; 75: 448–459.
  • Stambolian D, Ibay G, Reider L, Dana D, Moy C, Schlifka M, Holmes TN, Ciner E, Bailey‐wilson JE. Genome‐wide scan of additional Jewish families confirms linkage of a myopia susceptibility locus to chromosome 22q12. Mol Vis 2006; 12: 1499–1505.
  • Klein AP, Duggal P, Lee KE, Klein R, Bailey‐wilson JE, Klein BE. Confirmation of linkage to ocular refraction on chromosome 22q and identification of a novel linkage region on 1q. Arch Ophthalmol 2007; 125: 80–85.
  • Hammond CJ, Andrew T, Tat mak Y, Spector TD. A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. Am J Hum Genet 2004; 75: 294–304.
  • Stambolian D, Ciner EB, Reider LC, Moy C, Dana D, Owens R, Schlifka M, Holmes T, Ibay G, Bailey‐wilson JE. Genome‐wide scan for myopia in the Old Order Amish. Am J Ophthalmol 2005; 140: 469–476.
  • Zhang Q, Guo X, Xiao X, Jia X, Li S, Hejtmancik JF. A new locus for autosomal dominant high myopia maps to 4q22‐q27 between D4S1578 and D4S1612. Mol Vis 2005; 11: 554–560.
  • Paluru PC, Nallasamy S, Devoto M, Rappaport EF, Young TL. Identification of a novel locus on 2q for autosomal dominant high‐grade myopia. Invest Ophthalmol Vis Sci 2005; 46: 2300–2307.
  • Zhang Q, Guo X, Xiao X, Jia X, Li S, Hejtmancik JF. Novel locus for X linked recessive high myopia maps to Xq23‐q25 but outside MYP1. J Med Genet 2006; 43: e20.
  • Zhang Q, Li S, Xiao X, Jia X, Guo X. Confirmation of a genetic locus for X‐linked recessive high myopia outside MYP1. J Hum Genet 2007; 52: 469–472.
  • Wojciechowski R, Moy C, Ciner E, Ibay G, Reider L, Bailey‐wilson JE, Stambolian D. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36. Hum Genet 2006; 119: 389–399.
  • Nallasamy S, Paluru PC, Devoto M, Wasserman NF, Zhou J, Young TL. Genetic linkage study of high‐grade myopia in a Hutterite population from South Dakota. Mol Vis 2007;13: 229–236.
  • Syvanen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2001; 2: 930–942.
  • Syvanen AC, Taylor GR. Approaches for analyzing human mutations and nucleotide sequence variation: a report from the Seventh International Mutation Detection meeting, 2003. Hum Mutat 2004; 23: 401–405.
  • Chen X, Sullivan PF. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 2003; 3: 77–96.
  • Majewski J, Ott J. Distribution and characterization of regulatory elements in the human genome. Genome Res 2002; 12: 1827–1836.
  • Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001; 27: 234–236.
  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 1996; 380: 152–154.
  • Shastry BS. SNP alleles in human disease and evolution. J Hum Genet 2002; 47: 561–566.
  • Leung YF, Tam PO, Baum L, Lam DS, Pang CC. TIGR/MYOC proximal promoter GT‐repeat polymorphism is not associated with myopia. Hum Mutat 2000; 16: 533.
  • Han W, Yap MK, Wang J, Yip SP. Family‐based association analysis of hepatocyte growth factor (HGF) gene polymorphisms in high myopia. Invest Ophthalmol Vis Sci 2006; 47: 2291–2299.
  • Hashemi H, Hatef E, Fotouhi A, Mohammad K. Astigmatism and its determinants in the Tehran population: the Tehran eye study. Ophthalmic Epidemiol 2005; 12: 373–381.
  • Harvey EM, Dobson V, Miller JM. Prevalence of high astigmatism, eyeglass wear, and poor visual acuity among Native American grade school children. Optom Vis Sci 2006; 83: 206–212.
  • Saw SM, Carkeet A, Chia KS, Stone RA, Tan DT. Component dependent risk factors for ocular parameters in Singapore Chinese children. Ophthalmology 2002; 109: 2065–2071.
  • Yates JR, Connor JM. Genetic linkage. Br J Hosp Med 1986; 36: 133–136.
  • O’brien DA, Phillips AJ. Stickler syndrome. Clin Exp Optom 2000; 83: 330–332.
  • Byers PH. Determination of the molecular basis of Marfan syndrome: a growth industry. J Clin Invest 2004; 114: 161–163.
  • The international HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.
  • Lam DS, Lee WS, Leung YF, Tam PO, Fan DS, Fan BJ, Pang CP. TGFbeta‐induced factor: a candidate gene for high myopia. Invest Ophthalmol Vis Sci 2003; 44: 1012–1015.
  • Lin HJ, Wan L, Tsai Y, Tsai YY, Fan SS, Tsai CH, Tsai FJ. The TGFbeta 1 gene codon 10 polymorphism contributes to the genetic predisposition to high myopia. Mol Vis 2006; 12: 698–703.
  • Wang IJ, Chiang TH, Shih YF, Hsiao CK, Lu SC, Hou YC, Lin LL. The association of single nucleotide polymorphisms in the 5’‐regulatory region of the lumican gene with susceptibility to high myopia in Taiwan. Mol Vis 2006; 12: 852–857.
  • Morton NE, Collins A. Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci U S A 1998; 95: 11389–11393.
  • Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3: 299–309.
  • Little J, Bradley L, Bray MS, Clyne M, Dorman J, Ellsworth DL, Hanson J, Khoury M, Lau J, O’brien TR, Rothman N, Stroup D, Taioli E, Thomas D, Vainio H, Wacholder S, Weinberg C. Reporting, appraising, and integrating data on genotype prevalence and gene‐disease associations. Am J Epidemiol 2002; 156: 300–310.
  • Thomas DC, Witte JS. Point: population stratification: a problem for case‐control studies of candidate‐gene associations? Cancer Epidemiol Biomarkers Prev 2002; 11: 505–512.
  • Risch N, Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 1995; 268: 1584–1589.
  • Zhang H, Risch N. Mapping quantitative‐trait loci in humans by use of extreme concordant sib pairs: selected sampling by parental phenotypes. Am J Hum Genet 1996; 59: 951–957.
  • Abecasis GR, Cookson WO, Cardon LR. The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 2001; 68: 1463–1474.
  • Spielman RS, Ewens WJ. The TDT and other family‐based tests for linkage disequilibrium and association. Am J Hum Genet 1996; 59: 983–989.
  • Spielman RS, Mcginnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin‐dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.
  • Tang WC, Yip SP, Lo KK, Ng PW, Choi PS, Lee SY, Yap MK. Linkage and association of myocilin (MYOC) polymorphisms with high myopia in a Chinese population. Mol Vis 2007; 13: 534–544.
  • Syvanen AC. Toward genome‐wide SNP genotyping. Nat Genet 2005; 37 Suppl: S5–S10.
  • Craig DW, Stephan DA. Applications of whole‐genome high‐density SNP genotyping. Expert Rev Mol Diagn 2005; 5: 159–170.
  • Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, Shen R. Whole‐genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 2006; 7: 641–648.
  • Hirschhorn JN, Daly MJ. Genome‐wide association studies for common diseases and complex traits. Nat Rev Genet 2005; 6: 95–108.
  • Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome‐wide association studies: theoretical and practical concerns. Nat Rev Genet 2005; 6: 109–118.
  • Farrall M, Morris AP. Gearing up for genome‐wide gene‐association studies. Hum Mol Genet 2005; 14 Spec No. 2: R157–R162.
  • Christensen K, Murray JC. What genome‐wide association studies can do for medicine. N Engl J Med 2007; 356: 1094–1097.
  • Hattersley AT, Mccarthy MI. What makes a good genetic association study? Lancet 2005; 366: 1315–1323.
  • Mcbrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 2003; 22: 307–338.
  • Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res 2006; 82: 185–200.
  • Grodum K, Heijl A, Bengtsson B. Refractive error and glaucoma. Acta Ophthalmol Scand 2001; 79: 560–566.
  • Seko Y, Shimizu M, Tokoro T. Retinoic acid increases in the retina of the chick with form deprivation myopia. Ophthalmic Res 1998; 30: 361–367.
  • Bitzer M, Feldkaemper M, Schaeffel F. Visually induced changes in components of the retinoic acid system in fundal layers of the chick. Exp Eye Res 2000; 70: 97–106.
  • Mertz JR, Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp Eye Res 2000; 70: 519–527.
  • Hasumi Y, Inoko H, Mano S, Ota M, Okada E, Kulski JK, Nishizaki R, Mok J, Oka A, Kumagai N, Nishida T, Ohno S, Mizuki N. Analysis of single nucleotide polymorphisms at 13 loci within the transforming growth factor‐induced factor gene shows no association with high myopia in Japanese subjects. Immunogenetics 2006; 58: 947–953.
  • Dewan AT, Alvear AB, Peterson J, Holleschau A, King RA. Further refinement of the MYP2 locus for autosomal dominant high myopia by linkage disequilibrium analysis. Ophthalmic Genet 2001; 22: 69–75.
  • Heath S, Robledo R, Beggs W, Feola G, Parodo C, Rinaldi A, Contu L, Dana D, Stambolian D, Siniscalco M. A novel approach to search for identity by descent in small samples of patients and controls from the same Mendelian breeding unit: a pilot study on myopia. Hum Hered 2001; 52: 183–190.
  • Liang CL, Hung KS, Tsai YY, Chang W, Wang HS, Juo SH. Systematic assessment of the tagging polymorphisms of the COL1A1 gene for high myopia. J Hum Genet 2007; 52: 374–377.
  • Mutti DO, Semina E, Marazita M, Cooper M, Murray JC, Zadnik K. Genetic loci for pathological myopia are not associated with juvenile myopia. Am J Med Genet 2002; 112: 355–360.
  • Ibay G, Doan B, Reider L, Dana D, Schlifka M, Hu H, Holmes T, O’neill J, Owens R, Ciner E, Bailey‐wilson JE, Stambolian D. Candidate high myopia loci on chromosomes 18p and 12q do not play a major role in susceptibility to common myopia. BMC Med Genet 2004; 5: 20.
  • Scavello GS, Paluru PC, Ganter WR, Young TL. Sequence variants in the transforming growth beta‐induced factor (TGIF) gene are not associated with high myopia. Invest Ophthalmol Vis Sci 2004; 45: 2091–2097.
  • Zhou J, Young TL. Evaluation of Lipin 2 as a candidate gene for autosomal dominant 1 high‐grade myopia. Gene 2005; 352: 10–19.
  • Scavello GS Jr, Paluru PC, Zhou J, White PS, Rappaport EF, Young TL. Genomic structure and organization of the high grade Myopia‐2 locus (MYP2) critical region: mutation screening of 9 positional candidate genes. Mol Vis 2005; 11: 97–110.
  • Clarke LA, Rogers KM, Wagner SH, Delbono EA, Haines JL, Gwiazda JE, Wiggs JL. Evaluation of small leucine‐rich proteoglycans located on chromosome 12q21 in families with juvenile‐onset myopia. Invest Ophthalmol Vis Sci 2004; 45: E‐Abstract 1245.
  • Paluru PC, Scavello GS, Ganter WR, Young TL. Exclusion of lumican and fibromodulin as candidate genes in MYP3 linked high grade myopia. Mol Vis 2004; 10: 917–922.
  • Majava M, Bishop PN, Hagg P, Scott PG, Rice A, Inglehearn C, Hammond CJ, Spector TD, Ala‐kokko L, Mannikko M. Novel mutations in the small leucine‐rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat 2007; 28: 336–344.
  • Sham P, Bader JS, Craig I, O’donovan M, Owen M. Dna Pooling: a tool for large‐scale association studies. Nat Rev Genet 2002; 3: 862–871.
  • Barcellos LF, Klitz W, Field LL, Tobias R, Bowcock AM, Wilson R, Nelson MP, Nagatomi J, Thomson G. Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum Genet 1997; 61: 734–747.
  • Risch N, Teng J. The relative power of family‐based and case‐control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 1998; 8: 1273–1288.
  • Teng J, Risch N. The relative power of family‐based and case‐control designs for linkage disequilibrium studies of complex human diseases. II. Individual genotyping. Genome Res 1999; 9: 234–241.
  • Ito T, Chiku S, Inoue E, Tomita M, Morisaki T, Morisaki H, Kamatani N. Estimation of haplotype frequencies, linkage‐disequilibrium measures, and combination of haplotype copies in each pool by use of pooled DNA data. Am J Hum Genet 2003; 72: 384–398.
  • Wang S, Kidd KK, Zhao H. On the use of DNA pooling to estimate haplotype frequencies. Genet Epidemiol 2003; 24: 74–82.
  • Sawcer S, Maranian M, Setakis E, Curwen V, Akesson E, Hensiek A, Coraddu F, Roxburgh R, Sawcer D, Gray J, Deans J, Goodfellow PN, Walker N, Clayton D, Compston A. A whole genome screen for linkage disequilibrium in multiple sclerosis confirms disease associations with regions previously linked to susceptibility. Brain 2002; 125: 1337–1347.
  • Butcher LM, Meaburn E, Liu L, Fernandes C, Hill L, Al‐chalabi A, Plomin R, Schalkwyk L, Craig IW. Genotyping pooled DNA on microarrays: a systematic genome screen of thousands of SNPs in large samples to detect QTLs for complex traits. Behav Genet 2004; 34: 549–555.
  • Meaburn E, Butcher LM, Schalkwyk LC, Plomin R. Genotyping pooled DNA using 100K SNP microarrays: a step towards genomewide association scans. Nucleic Acids Res 2006; 34: e27.
  • Steer S, Abkevich V, Gutin A, Cordell HJ, Gendall KL, Merriman ME, Rodger RA, Rowley KA, Chapman P, Gow P, Harrison AA, Highton J, Jones PB, O’donnell J, Stamp L, Fitzgerald L, Iliev D, Kouzmine A, Tran T, Skolnick MH, Timms KM, Lanchbury JS, Merriman TR. Genomic DNA pooling for whole‐genome association scans in complex disease: empirical demonstration of efficacy in rheumatoid arthritis. Genes Immun 2007; 8: 57–68.
  • Zhou G, Williams RW. Eye1 and Eye2: gene loci that modulate eye size, lens weight, and retinal area in the mouse. Invest Ophthalmol Vis Sci 1999; 40: 817–825.
  • Colhoun HM, Mckeigue PM, Davey smith G. Problems of reporting genetic associations with complex outcomes. Lancet 2003; 361: 865–872.
  • Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet 2004; 5: 89–100.
  • Gordon D, Finch SJ. Factors affecting statistical power in the detection of genetic association. J Clin Invest 2005; 115: 1408–1418.
  • Agerholm‐larsen B, Nordestgaard BG, Tybjaerg‐hansen A. ACE gene polymorphism in cardiovascular disease: meta‐analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol 2000; 20: 484–492.
  • Keavney B, Mckenzie C, Parish S, Palmer A, Clark S, Youngman L, Delepine M, Lathrop M, Peto R, Collins R. Large‐scale test of hypothesised associations between the angiotensin‐converting‐enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. International Studies of Infarct Survival (ISIS) Collaborators. Lancet 2000; 355: 434–442.
  • Wilson A, Woo G. A review of the prevalence and causes of myopia. Singapore Med J 1989; 30: 479–484.
  • Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet 1995; 346: 1133–1134.
  • Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG. Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 2007; 39: 226–231.
  • Knight JC. Functional implications of genetic variation in non‐coding DNA for disease susceptibility and gene regulation. Clin Sci (Lond) 2003; 104: 493–501.
  • Grigorenko EL. The inherent complexities of gene‐environment interactions. J Gerontol B Psychol Sci Soc Sci 2005; 60 Spec No 1: 53–64.
  • Saw SM. A synopsis of the prevalence rates and environmental risk factors for myopia. Clin Exp Optom 2003; 86: 289–294.
  • Norris JM, Selinger‐leneman H, Genin E. Investigation of a candidate gene, environment, and G x E interaction using case‐control and case‐parent study designs. Genet Epidemiol 2001; 21 Suppl 1: S843–S848.
  • Liu X, Fallin MD, Kao WH. Genetic dissection methods: designs used for tests of gene‐environment interaction. Curr Opin Genet Dev 2004; 14: 241–245.
  • Ritchie MD. Bioinformatics approaches for detecting gene‐gene and gene‐environment interactions in studies of human disease. Neurosurg Focus 2005; 19: E2.
  • Wallace HM. A model of gene‐gene and gene‐environment interactions and its implications for targeting environmental interventions by genotype. Theor Biol Med Model 2006; 3: 35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.