68
Views
23
CrossRef citations to date
0
Altmetric
Reviews

A review of the role of glial cells in understanding retinal disease

, MScOptom PhD, , BOptom, , BA BSc(Hons), , BSc(Hons), , MPhil Optom, , BOptom PhD, , B Optom PhD & , BAS show all
Pages 67-77 | Received 27 Apr 2007, Accepted 02 Aug 2007, Published online: 15 Apr 2021

REFERENCES

  • Ewing FM, Deary IJ, Strachan MW, Frier BM. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 1998; 19: 462–476.
  • Fletcher EL, Phipps JA, Wilkinson‐berka JL. Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom 2005; 88: 132–145.
  • Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol Scand 1980; 58: 865–878.
  • Shirao Y, Kawasaki K. Electrical responses from diabetic retina. Prog Retin Eye Res 1998; 17: 59–76.
  • Phipps JA, Fletcher EL, Vingrys AJ. Paired‐flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci 2004; 45: 4592–4600.
  • Phipps JA, Wilkinson‐berka JL, Fletcher EL. Retinal dysfunction in diabetic ren‐2 rats is ameliorated by treatment with valsartan but not atenolol. Invest Ophthalmol Vis Sci 2007; 48: 927–934.
  • Hancock HA, Kraft TW. Oscillatory Potential Analysis and ERGs of Normal and Diabetic Rats. Invest Ophthalmol Vis Sci 2004; 45: 1002–1008.
  • Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE. Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2355–2365.
  • Bresnick GH, Korth K, Groo A, Palta M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy. Preliminary report. Arch Ophthalmol 1984; 102: 1307–1311.
  • Bresnick GH, Palta M. Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol 1987; 105: 929–933.
  • Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol 1987; 105: 810–814.
  • Bearse MA Jr, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 3259–3265.
  • Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 948–954.
  • Wong T, Mitchell P. The eye in hypertension. Lancet 2007; 369: 425–435.
  • Nguyen TT, Wong TY. Retinal vascular manifestations of metabolic disorders. Trends Endocrinol Metab 2006; 17: 262–268.
  • Wang JJ, Liew G, Wong TY, Smith W, Klein R, Leeder SR, Mitchell P. Retinal vascular calibre and the risk of coronary heart disease‐related death. Heart 2006; 92: 1583–1587.
  • Mitchell P, Wang JJ, Wong TY, Smith W, Klein R, Leeder SR. Retinal microvascular signs and risk of stroke and stroke mortality. Neurology 2005; 65: 1005–1009.
  • Wong TY, Mcintosh R. Systemic associations of retinal microvascular signs: a review of recent population‐based studies. Ophthalmic Physiol Opt 2005; 25: 195–204.
  • Wong TY, Shankar A, Klein R, Klein BE, Hubbard LD. Retinal arteriolar narrowing, hypertension, and subsequent risk of diabetes mellitus. Arch Intern Med 2005; 165: 1060–1065.
  • Wong TY, Shankar A, Klein R, Klein BE. Retinal vessel diameters and the incidence of gross proteinuria and renal insufficiency in people with type 1 diabetes. Diabetes 2004; 53: 179–184.
  • Klein R, Klein BE, Moss SE, Wong TY, Hubbard L, Cruickshanks KJ, Palta M. Retinal vascular abnormalities in persons with type 1 diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVIII. Ophthalmology 2003; 110: 2118–2125.
  • Klein R, Klein BE, Moss SE, Wong TY, Hubbard L, Cruickshanks KJ, Palta M. The relation of retinal vessel caliber to the incidence and progression of diabetic retinopathy: XIX: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol 2004; 122: 76–83.
  • Klein R, Klein BE, Moss SE, Wong TY, Sharrett AR. Retinal vascular caliber in persons with type 2 diabetes: the Wisconsin Epidemiological Study of Diabetic Retinopathy. Ophthalmology 2006; 113: 1488–1498.
  • Alibrahim E, Donaghue KC, Rogers S, Hing S, Jenkins AJ, Chan A, Wong TY. Retinal vascular caliber and risk of retinopathy in young patients with type 1 diabetes. Ophthalmology 2006; 113: 1499–1503.
  • Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin‐dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 1996; 37: 886–897.
  • Bursell SE, Clermont AC, Shiba T, King GL. Evaluating retinal circulation using video fluorescein angiography in control and diabetic rats. Curr Eye Res 1992; 11: 287–295.
  • Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 2006; 26: 2862–2870.
  • Mulligan SJ, Macvicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 2004; 431: 195–199.
  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25: 397–424.
  • Newman E, Reichenbach A. The Müller cell: a functional element of the retina. Trends Neurosci 1996; 19: 307–312.
  • Ripps H, Witkovsky P, Neuron‐glia interaction in the brain and retina. In: Chader GG, Osborne NN, eds. Progress in Retinal Eye Research. Oxford: Pergamon Press, 1985. p 181–219.
  • Tout S, Chan‐ling T, Hollander H, Stone J. The role of Müller cells in the formation of the blood‐retinal barrier. Neuroscience 1993; 55: 291–301.
  • Schnitzer J. Astrocytes in mammalian retina. Prog Ret Res 1988; 7: 209–232.
  • Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res 2001; 20: 799–821.
  • Gariano RF. Cellular mechanisms in retinal vascular development. Prog Retin Eye Res 2003; 22: 295–306.
  • Gariano RF, Sage EH, Kaplan HJ, Hendrickson AE. Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest Ophthalmol Vis Sci 1996; 37: 2367–2375.
  • Metea MR, Kofuji P, Newman EA. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci 2007; 27: 2468–2471.
  • Roy CS, Sherrington C. On the regulation of the blood supply of the brain. J Physiol 1890; 11: 85–108.
  • Araque A, Carmignoto G, Haydon PG. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 2001; 63: 795–813.
  • Haydon PG. GLIA: listening and talking to the synapse. Nat Rev Neurosci 2001; 2: 185–193.
  • Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 2006; 86: 1009–1031.
  • Newman EA, Zahs KR. Calcium waves in retinal glial cells. Science 1997; 275: 844–847.
  • Newman EA. Calcium signaling in retinal glial cells and its effect on neuronal activity. Prog Brain Res 2001; 132: 241–254.
  • Newman EA. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 2001; 21: 2215–2223.
  • Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci 2003; 23: 1659–1666.
  • Newman EA. Glial modulation of synaptic transmission in the retina. Glia 2004; 47: 268–274.
  • Newman EA. Calcium increases in retinal glial cells evoked by light‐induced neuronal activity. J Neurosci 2005; 25: 5502–5510.
  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB. ATP released from astrocytes mediates glial calcium waves. J Neurosci 1999; 19: 520–528.
  • Fiacco TA, Mccarthy KD. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 2004; 24: 722–732.
  • Puthussery T, Fletcher EL. Synaptic localization of P2X7 receptors in the rat retina. J Comp Neurol 2004; 472: 13–23.
  • Puthussery T, Yee P, Vingrys AJ, Fletcher EL. Evidence for the involvement of purinergic P2X receptors in outer retinal processing. Eur J Neurosci 2006; 24: 7–19.
  • Puthussery T, Fletcher EL. P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. J Comp Neurol 2006; 496: 595–609.
  • Puthussery T, Fletcher EL. Neuronal expression of P2X3 purinoceptors in the rat retina. Neuroscience 2007; 146: 403–414.
  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte‐mediated control of cerebral blood flow. Nat Neurosci 2006; 9: 260–267.
  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G. Neuron‐to‐astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6: 43–50.
  • Devor A, Ulbert I, Dunn AK, Narayanan SN, Jones SR, Andermann ML, Boas DA, Dale AM. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc Natl Acad Sci USA 2005; 102: 3822–3827.
  • Shmuel A, Yacoub E, Pfeuffer J, Van de moortele PF, Adriany G, Hu X, and Ugurbil K. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron. 2002; 36: 1195–210.
  • Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006; 443: 700–704.
  • Shepro D, Morel NM. Pericyte physiology. Faseb J 1993; 7: 1031–1038.
  • Pannarale L, Onori P, Ripani M, Gaudio E. Precapillary patterns and perivascular cells in the retinal microvasculature. A scanning electron microscope study. J Anat 1996; 188 ( Pt 3): 693–703.
  • Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG, Narayanan J, Falck JR, Okamoto H, Roman RJ, Nithipatikom K, Campbell WB, Harder DR. Production of 20‐HETE and its role in autoregulation of cerebral blood flow. Circ Res 2000; 87: 60–65.
  • Filosa JA, Bonev AD, Nelson MT. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 2004; 95: e73–81.
  • Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 2006; 9: 1397–1403.
  • Kawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu DM, Puro DG. Effects of angiotensin II on the pericyte‐containing microvasculature of the rat retina. J Physiol 2004; 561: 671–683.
  • Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG. ATP: a vasoactive signal in the pericyte‐containing microvasculature of the rat retina. J Physiol 2003; 551: 787–799.
  • Smith IF, Boyle JP, Kang P, Rome S, Pearson HA, Peers C. Hypoxic regulation of Ca2+ signaling in cultured rat astrocytes. Glia 2005; 49: 153–157.
  • Peers C, Smith IF, Boyle JP, Pearson HA. Remodelling of Ca2+ homeostasis in type I cortical astrocytes by hypoxia: evidence for association with Alzheimer's disease. Biol Chem 2004; 385: 285–289.
  • Smith IF, Boyle JP, Green KN, Pearson HA, Peers C. Hypoxic remodelling of Ca2+ mobilization in type I cortical astrocytes: involvement of ROS and pro‐amyloidogenic APP processing. J Neurochem 2004; 88: 869–877.
  • Smith IF, Boyle JP, Plant LD, Pearson HA, Peers C. Hypoxic remodeling of Ca2+ stores in type I cortical astrocytes. J Biol Chem 2003; 278: 4875–4881.
  • Smith IF, Plant LD, Boyle JP, Skinner RA, Pearson HA, Peers C. Chronic hypoxia potentiates capacitative Ca2+ entry in type‐I cortical astrocytes. J Neurochem 2003; 85: 1109–1116.
  • Duffy S, Macvicar BA. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 1996; 16: 71–81.
  • Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci 2000; 41: 3561–3568.
  • Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM. Glial reactivity and impaired glutamate metabolism in short‐term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998; 47: 815–820.
  • Rungger‐brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 2000; 41: 1971–1980.
  • Lo TC, Klunder L, Fletcher EL. Increased Müller cell density during diabetes is ameliorated by aminoguanidine and ramipril. Clin Exp Optom 2001; 84: 276–281.
  • Zeng X, Ng Y, Ling E. Neuronal and microglial response in the retina of streptozotocin‐induced diabetic rats. Visual Neuroscience 2000; 17: 463–471.
  • Mizutani M, Gerhardinger C, Lorenzi M. Müller cell changes in human diabetic retinopathy. Diabetes 1998; 47: 445–449.
  • Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 2002; 74: 615–625.
  • Su E‐N, Alder VA, Yu D‐Y, Yu PK, Cringle SJ, Yogesan K. Continued progression of retinopathy despite spontaneous recovery to normoglycemia in a long‐term study of stretozotocin‐induced diabetes in rats. Graefes Arch Clin Exp Ophthalmol 2000; 238: 163–173.
  • Downie LE, Pianta MJ, Vingrys AJ, Wilkinson‐berka JL, Fletcher EL. Neuronal and glial cell changes are determined by retinal vascularization in retinopathy or prematurity. J Comp Neurol 2007; 504: 404–417.
  • Bringmann A, Francke M, Pannicke T, Biedermann B, Kodal H, Faude F, Reichelt W, Reichenbach A. Role of glial K(+) channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 2000; 29: 35–44.
  • Bringmann A, Francke M, Pannicke T, Biedermann B, Faude F, Enzmann V, Wiedemann P, Reichelt W, Reichenbach A. Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 1999; 40: 3316–3323.
  • Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A. Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol 2002; 37: 221–227.
  • Pannicke T, Iandiev I, Wurm A, Uckermann O, Vom hagen F, Reichenbach A, Wiedemann P, Hammes HP, Bringmann A. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 2006; 55: 633–639.
  • Dyer MA, Cepko CL. Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 2000; 3: 873–880.
  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–1487.
  • Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, Skinner SL, Wilkinson‐berka JL. Retinal neovascularization is prevented by blockade of the renin‐angiotensin system. Hypertension 2000; 36: 1099–1104.
  • Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 36–47.
  • Behzadian MA, Wang XL, Shabrawey M, Caldwell RB. Effects of hypoxia on glial cell expression of angiogenesis‐regulating factors VEGF and TGF‐beta. Glia 1998; 24: 216–225.
  • Nicholls MG, Richards AM, Agarwal M. The importance of the renin‐angiotensin system in cardiovascular disease. J Hum Hypertens 1998; 12: 295–299.
  • Kato H, Suzuki H, Tajima S, Ogata Y, Tominaga T, Sato A, Saruta T. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertens 1991; 9: 17–22.
  • Otani A, Takagi H, Suzuma K, Honda Y. Angiotensin II potentiates endothelial growth factor‐induced angiogenic activity in retinal microcapillary endothelial cells. Circ Res 1998; 82: 619–628.
  • Wilkinson‐berka JL, Fletcher EL. Angiotensin and bradykinin: targets for the treatment of vascular and neuro‐glial pathology in diabetic retinopathy. Curr Pharm Des 2004; 10: 3313–3330.
  • Stornetta RL, Hawelu‐johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988; 242: 1444–1446.
  • Luetscher JA, Kraemer FB, Wilson DM, Schwartz HC, Bryer‐ash M. Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications. N Engl J Med 1985; 312: 1412–1417.
  • Franken AA, Derkx FH, Schalekamp MA, Man in Tapos;veld AJ, Hop WC, Van rens EH, De jong PT.Association of high plasma prorenin with diabetic retinopathy. J Hypertens Suppl 1988; 6: S461–S463.
  • Deinum J, Tarnow L, Van gool JM, De bruin RA, Derkx FHM, Schalekamp MADH, Parving H‐H. Plasma renin and prorenin and renin gene variation in patients with insulin‐dependent diabetes mellitus and nephropathy. Nephrol Dial Transplant 1999; 14: 1904–1911.
  • Allen TJ, Cooper ME, Gilbert RE, Winikoff J, Skinnier SL, Jerums G. Serum total renin is increased before microalbuminuria in diabetes. Kidney Int 1996; 50: 902–907.
  • Bui BV, Armitage JA, Tolcos M, Cooper ME, Vingrys AJ. ACE inhibition salvages the visual loss caused by diabetes. Diabetologia 2003; 46: 401–408.
  • Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P. Expression of acute‐phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 2005; 46: 349–357.
  • Carmo A, Cunha‐vaz JG, Carvalho AP, Lopes MC. Nitric oxide synthase activity in retinas from non‐insulin‐dependent diabetic Goto‐Kakizaki rats: correlation with blood‐retinal barrier permeability. Nitric Oxide 2000; 4: 590–596.
  • Do carmo A, Lopes C, Santos M, Proenca R, Cunha‐vaz J, Carvalho AP. Nitric oxide synthase activity and L‐arginine metabolism in the retinas from streptozotocin‐induced diabetic rats. Gen Pharmacol 1998; 30: 319–324.
  • Carmo A, Cunha‐vaz JG, Carvalho AP, Lopes MC. L‐arginine transport in retinas from streptozotocin diabetic rats: correlation with the level of IL‐1 beta and NO synthase activity. Vision Res 1999; 39: 3817–3823.
  • Du Y, Sarthy VP, Kern TS. Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol 2004; 287: R735–R741.
  • Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, Dubois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 705–716.
  • Leahy KM, Ornberg RL, Wang Y, Zweifel BS, Koki AT, Masferrer JL. Cyclooxygenase‐2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res 2002; 62: 625–631.
  • Sennlaub F, Valamanesh F, Vazquez‐tello A, El‐asrar AM, Checchin D, Brault S, Gobeil F, Beauchamp MH, Mwaikambo B, Courtois Y, Geboes K, Varma DR, Lachapelle P, Ong H, Behar‐cohen F, Chemtob S. Cyclooxygenase‐2 in human and experimental ischemic proliferative retinopathy. Circulation 2003; 108: 198–204.
  • Wilkinson‐berka JL, Alousis NS, Kelly DJ, Gilbert RE. COX‐2 inhibition and retinal angiogenesis in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2003; 44: 974–979.
  • Cheng T, Cao W, Wen R, Steinberg RH, Lavail MM. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Müller cells. Invest Ophthalmol Vis Sci 1998; 39: 581–591.
  • Guidry C. The role of Müller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 2005; 24: 75–86.
  • Moll V, Weick M, Milenkovic I, Kodal H, Reichenbach A, Bringmann A. P2Y receptor‐mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 2002; 43: 766–773.
  • Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A. P2Y receptor‐mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 2003; 44: 1211–1220.
  • Sramek SJ, Wallow IH, Stevens TS, Nork TM. Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 1989; 96: 835–841.
  • Guidry C. Tractional force generation by porcine Müller cells. Development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 1997; 38: 456–468.
  • Hardwick C, Feist R, Morris R, White M, Witherspoon D, Angus R, Guidry C. Tractional force generation by porcine Müller cells: stimulation by growth factors in human vitreous. Invest Ophthalmol Vis Sci 1997; 38: 2053–2063.
  • Guidry C, Feist R, Morris R, Hardwick CW. Changes in IGF activities in human diabetic vitreous. Diabetes 2004; 53: 2428–2435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.