126
Views
63
CrossRef citations to date
0
Altmetric
Diabetes and the Posterior Eye

The role of glia in retinal vascular disease

, BSc (Adv Hons I), , MD PhD, , BSc (Hons), , PhD & , MBBS PhD FRACO
Pages 266-281 | Received 01 Nov 2011, Accepted 18 Jan 2012, Published online: 15 Apr 2021

REFERENCES

  • Good WV, Hardy RJ, Dobsob V, Palmer EA, Phelps DL, Quintos M, Tung B et al. The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics 2005; 116: 15–23.
  • Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes. Diabetes Care 2004; 27: 1047–1053.
  • Fong DS, Aiello LP, Ferris FL, Klein R. Diabetic retinopathy. Diabetes Care 2004; 27: 2540–2553.
  • Smith W, Assink J, Klein R, Mitchell P, Klaver CCW, Klein BEK, Hofman A et al. Risk factors for age‐related macular degeneration: pooled findings from three continents. Ophthalmology 2001; 108: 697–704.
  • Yu D‐Y, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res 2005; 80: 745–751.
  • Kaur C, Foulds WS, Ling EA. Blood–retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res 2008; 27: 622–647.
  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 2004; 286: C1213–C1228.
  • Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006; 86: 279–367.
  • Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72: 463–493.
  • Abbott NJ, Romero IA. Transporting therapeutics across the blood‐brain barrier. Mol Med Today 1996; 2: 106–113.
  • Gardner TW, Antonetti DA, Barber AJ, Lanoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Opthalmol 2002; 47 (Suppl 2): S253–S262.
  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res 2011; 30: 343–358.
  • Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Opthalmol 1998; 43: 245–269.
  • Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res 2008; 27: 331–371.
  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298–307.
  • Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235: 442–447.
  • Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007; 6: 273–286.
  • Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF‐receptor chimeric proteins. Proc Natl Acad Sci USA 1995; 92: 10457–10461.
  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–1487.
  • Senger D, Galli S, Dvorak A, Perruzzi C, Harvey V, Dvorak H. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.
  • Ferris FL. How effective are treatments for diabetic retinopathy? JAMA 1993; 269: 1290–1291.
  • Elman MJ, Bressler NM, Qin H, Beck RW, Ferris FL 3rd, Friedman SM, Glassman AR et al. Expanded 2‐year follow‐up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2011; 118: 609–614.
  • Gillies MC, Sutter FKP, Simpson JM, Larsson J, Ali H, Zhu M. Intravitreal triamcinolone for refractory diabetic macular edema: two‐year results of a double‐masked, placebo‐controlled, randomized clinical trial. Ophthalmology 2006; 113: 1533–1538.
  • Michels RG. Vitrectomy for complications of diabetic retinopathy. Arch Ophthalmol 1978; 96: 237–246.
  • Ferris FL, Davis MD, Aiello LM. Treatment of diabetic retinopathy. N Engl J Med 1999; 341: 667–678.
  • Jager RD, Mieler WF, Miller JW. Age‐related macular degeneration. N Engl J Med 2008; 358: 2606–2617.
  • Gardner TW, Abcouwer SF, Barber AJ, Jackson GR. An integrated approach to diabetic retinopathy research. Arch Ophthalmol 2011; 129: 230–235.
  • Chen J, Smith L. Retinopathy of prematurity. Angiogenesis 2007; 10: 133–140.
  • Klein R, Klein BEK. Diabetic eye disease. Lancet 1997; 350: 197–204.
  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25: 397–424.
  • Schnitzer J. Astrocytes in the guinea pig, horse, and monkey retina: their occurrence coincides with the presence of blood vessels. Glia 1988; 1: 74–89.
  • Karlstetter M, Ebert S, Langmann T. Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 2011; 215: 685–691.
  • Bacaj T, Tevlin M, Lu Y, Shaham S. Glia are essential for sensory organ function in C. elegans. Science 2008; 322: 744–747.
  • Dubois‐dauphin M, Poitry‐yamate C, De bilbao F, Julliard AK, Jourdan F, Donati G. Early postnatal Müller cell death leads to retinal but not optic nerve degeneration in NSE‐Hu‐Bcl‐2 transgenic mice. Neuroscience 1999; 95: 9–21.
  • Reichenbach A, Fuchs U, Kasper M, El‐hifnawi E, Eckstein A. Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol 1995; 90: 273–281.
  • Kellner U, Kraus H, Heimann H, Helbig H, Bornfeld N, Foerster MH. Electrophysiological evaluation of visual loss in Müller cell sheen dystrophy. Br J Ophthalmol 1998; 82: 650–654.
  • Powner MB, Gillies MC, Tretiach M, Scott A, Guymer RH, Hageman GS, Fruttiger M. Perifoveal Müller cell depletion in a case of macular telangiectasia type 2. Ophthalmology 2010; 117: 2407–2416.
  • Peek R, Verbraak F, Coevoet HM, Kijlstra A. Müller cell‐specific autoantibodies in a patient with progressive loss of vision. Invest Ophthalmol Vis Sci 1998; 39: 1976–1979.
  • Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P et al. Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 2009; 54: 143–160.
  • Ames A. CNS energy metabolism as related to function. Brain Res Brain Res Rev 2000; 34: 42–68.
  • Ames A, Li Y, Heher E, Kimble C. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 1992; 12: 840–853.
  • Tsacopoulos M, Magistretti P. Metabolic coupling between glia and neurons. J Neurosci 1996; 16: 877–885.
  • Poitry‐yamate C, Poitry S, Tsacopoulos M. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci 1995; 15: 5179–5191.
  • Winkler BS, Arnold MJ, Brassell MA, Puro DG. Energy metabolism in human retinal Müller cells. Invest Ophthalmol Vis Sci 2000; 41: 3183–3190.
  • Kuwabara T, Cogan DG. Retinal glycogen. Arch Ophthalmol 1961; 66: 680–688.
  • Peterson WM, Wang Q, Tzekova R, Wiegand SJ. Ciliary neurotrophic factor and stress stimuli activate the Jak‐STAT pathway in retinal neurons and glia. J Neurosci 2000; 20: 4081–4090.
  • Wahlin KJ, Campochiaro PA, Zack DJ, Adler R. Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina but not photoreceptors. Invest Ophthalmol Vis Sci 2000; 41: 927–936.
  • Joly S, Lange C, Thiersch M, Samardzija M, Grimm C. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J Neurosci 2008; 28: 13765–13774.
  • Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28: 423–451.
  • Walsh N, Valter K, Stone J. Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp Eye Res 2001; 72: 495–501.
  • Wen R, Cheng T, Li Y, Cao W, Steinberg RH. α2‐adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage. J Neurosci 1996; 16: 5986–5992.
  • Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci 2004; 5: 747–757.
  • Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 1999; 18: 765–810.
  • Beart PM, O'shea RD. Transporters for L‐glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007; 150: 5–17.
  • Riepe RE, Norenburg MD. Müller cell localisation of glutamine synthetase in rat retina. Nature 1977; 268: 654–655.
  • Barnett NL, Pow DV, Robinson SR. Inhibition of Müller cell glutamine synthetase rapidly impairs the retinal response to light. Glia 2000; 30: 64–73.
  • Poitry S, Poitry‐yamate C, Ueberfeld J, Macleish PR, Tsacopoulos M. Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. J Neurosci 2000; 20: 1809–1821.
  • Szatkowski M, Barbour B, Attwell D. Non‐vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 1990; 348: 443–446.
  • Newman E. Inward‐rectifying potassium channels in retinal glial (Müller) cells. J Neurosci 1993; 13: 3333–3345.
  • Newman E, Frambach D, Odette L. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 1984; 225: 1174–1175.
  • Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 1999; 26: 47–54.
  • Verkman AS. Role of aquaporin water channels in eye function. Exp Eye Res 2003; 76: 137–143.
  • Bouvier M, Szatkowski M, Amato A, Attwell D. The glial cell glutamate uptake carrier countertransports pH‐changing anions. Nature 1992; 360: 471–474.
  • Nicholson C, Syková E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci 1998; 21: 207–215.
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte‐endothelial interactions at the blood‐brain barrier. Nat Rev Neurosci 2006; 7: 41–53.
  • Haydon PG. Glia: listening and talking to the synapse. Nat Rev Neurosci 2001; 2: 185–193.
  • Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22: 208–215.
  • Stone J, Dreher Z. Relationship between astrocytes, ganglion cells and vasculature of the retina. J Comp Neurol 1987; 255: 35–49.
  • Holländer H, Makarov F, Dreher Z, Van driel D, Chan‐ling T, Stone J. Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Müller cells. J Comp Neurol 1991; 313: 587–603.
  • Zahs KR, Newman EA. Asymmetric gap junctional coupling between glial cells in the rat retina. Glia 1997; 20: 10–22.
  • Newman EA, Zahs KR. Calcium waves in retinal glial cells. Science 1997; 275: 844–847.
  • Oliet SHR, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 2001; 292: 923–926.
  • Franze K, Grosche J, Skatchkov SN, Schinkinger S, Foja C, Schild D, Uckermann O et al. Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci USA 2007; 104: 8287–8292.
  • Hume DA, Perry VH, Gordon S. Immunohistochemical localization of a macrophage‐specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 1983; 97: 253–257.
  • Frade JM, Barde Y‐A. Microglia‐derived nerve growth factor causes cell death in the developing retina. Neuron 1998; 20: 35–41.
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314–1318.
  • Lee JE, Liang KJ, Fariss RN, Wong WT. Ex vivo dynamic imaging of retinal microglia using time‐lapse confocal microscopy. Invest Ophthalmol Vis Sci 2008; 49: 4169–4176.
  • Langmann T. Microglia activation in retinal degeneration. J Leukoc Biol 2007; 81: 1345–1351.
  • Santos AM, Martín‐oliva D, Ferrer‐martín RM, Tassi M, Calvente R, Sierra A, Carrasco M‐C et al. Microglial response to light‐induced photoreceptor degeneration in the mouse retina. J Comp Neurol 2010; 518: 477–492.
  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, et al. Down‐regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290: 1768–1771.
  • Hanisch U‐K. Microglia as a source and target of cytokines. Glia 2002; 40: 140–155.
  • Hanisch U‐K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387–1394.
  • Watanabe T, Raff MC. Retinal astrocytes are immigrants from the optic nerve. Nature 1988; 332: 834–837.
  • Fruttiger M. Development of the retinal vasculature. Angiogenesis 2007; 10: 77–88.
  • Mudhar HS, Pollock RA, Wang C, Stiles CD, Richardson WD. PDGF and its receptors in the developing rodent retina and optic nerve. Development 1993; 118: 539–552.
  • Fruttiger M, Calver AR, Richardson WD. Platelet‐derived growth factor is constitutively secreted from neuronal cell bodies but not from axons. Curr Biol 2000; 10: 1283–1286.
  • Fruttiger M, Calver AR, Krüger WH, Mudhar HS, Michalovich D, Takakura N, Nishikawa SI et al. PDGF mediates a neuron–astrocyte interaction in the developing retina. Neuron 1996; 17: 1117–1131.
  • Dorrell MI, Aguilar E, Friedlander M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R‐cadherin adhesion. Invest Ophthalmol Vis Sci 2002; 43: 3500–3510.
  • Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan‐ling T, Keshet E. Development of retinal vasculature is mediated by hypoxia‐induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 1995; 15: 4738–4747.
  • Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 2010; 16: 417–425.
  • Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 2006; 47: 3595–3602.
  • Gardner TW, Lieth E, Khin SA, Barber AJ, Bonsall DJ, Lesher T, Rice K et al. Astrocytes increase barrier properties and ZO‐1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 1997; 38: 2423–2427.
  • Shen W, Li S, Chung SH, Gillies MC. Retinal vascular changes after glial disruption in rats. J Neurosci Res 2010; 88: 1485–1499.
  • Lewis GP, Fisher SK. Up‐regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 2003; 230: 263–290.
  • Grosche J, Härtig W, Reichenbach A. Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl‐2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci Lett 1995; 185: 119–122.
  • Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK. Changes in the expression of specific Müller cell proteins during long‐term retinal detachment. Exp Eye Res 1989; 49: 93–111.
  • Marc RE, Murry RF, Fisher SK, Linberg KA, Lewis GP. Amino acid signatures in the detached cat retina. Invest Ophthalmol Vis Sci 1998; 39: 1694–1702.
  • Ekström P, Sanyal S, Narfström K, Chader GJ, Van veen T. Accumulation of glial fibrillary acidic protein in Müller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 1988; 29: 1363–1371.
  • Sarthy PV, Fu M. Transcriptional activation of an intermediate filament protein gene in mice with retinal dystrophy. DNA 1989; 8: 437–446.
  • Lu Y‐B, Iandiev I, Hollborn M, Körber N, Ulbricht E, Hirrlinger PG, Pannicke T et al. Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 2011; 25: 624–631.
  • Lu Y‐B, Franze K, Seifert G, Steinhäuser C, Kirchhoff F, Wolburg H, Guck J et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci USA 2006; 103: 17759–17764.
  • Lundkvist A, Reichenbach A, Betsholtz C, Carmeliet P, Wolburg H, Pekny M. Under stress, the absence of intermediate filaments from Müller cells in the retina has structural and functional consequences. J Cell Sci 2004; 117: 3481–3488.
  • Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H et al. Microglia–Müller glia cell interactions control neurotrophic factor production during light‐induced retinal degeneration. J Neurosci 2002; 22: 9228–9236.
  • Maharaj ASR, Saint‐geniez M, Maldonado AE, D'amore PA. Vascular endothelial growth factor localization in the adult. Am J Pathol 2006; 168: 639–648.
  • Storkebaum E, Lambrechts D, Dewerchin M, Moreno‐murciano M‐P, Appelmans S, Oh H, Van damme P et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005; 8: 85–92.
  • Sun F‐Y, Guo X. Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res 2005; 79: 180–184.
  • Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A et al. Monocyte chemoattractant protein 1 mediates retinal detachment‐induced photoreceptor apoptosis. Proc Natl Acad Sci USA 2007; 104: 2425–2430.
  • Nakazawa T, Matsubara A, Noda K, Hisatomi T, She H, Skondra D, Miyahara S et al. Characterization of cytokine responses to retinal detachment in rats. Mol Vis 2006; 12: 867–878.
  • Roque RS, Rosales AA, Jingjing L, Agarwal N, Al‐ubaidi MR. Retina‐derived microglial cells induce photoreceptor cell death in vitro. Brain Res 1999; 836: 110–119.
  • Srinivasan B, Roque CH, Hempstead BL, Al‐ubaidi MR, Roque RS. Microglia‐derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem 2004; 279: 41839–41845.
  • Dyer MA, Cepko CL. Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 2000; 3: 873–880.
  • Burke JM, Smith JM. Retinal proliferation in response to vitreous hemoglobin or iron. Invest Ophthalmol Vis Sci 1981; 20: 582–592.
  • Jones BW, Watt CB, Frederick JM, Baehr W, Chen C‐K, Levine EM, Milam AH et al. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 2003; 464: 1–16.
  • Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607–655.
  • O'connor AR, Stephenson T, Johnson A, Tobin MJ, Moseley MJ, Ratib S, Ng Y et al. Long‐term ophthalmic outcome of low birth weight children with and without retinopathy of prematurity. Pediatrics 2002; 109: 12–18.
  • Fulton AB, Hansen RM, Moskowitz A, Akula JD. The neurovascular retina in retinopathy of prematurity. Prog Retin Eye Res 2009; 28: 452–482.
  • Smith LE, Wesolowski E, Mclellan A, Kostyk SK, D'amato R, Sullivan R, D'amore PA. Oxygen‐induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994; 35: 101–111.
  • Fulton AB, Hansen RM, Petersen RA, Vanderveen DK. The rod photoreceptors in retinopathy of prematurity: an electroretinographic study. Arch Ophthalmol 2001; 119: 499–505.
  • Fulton AB, Hansen RM, Moskowitz A. The cone electroretinogram in retinopathy of prematurity. Invest Ophthalmol Vis Sci 2008; 49: 814–819.
  • Akula JD, Hansen RM, Martinez‐perez ME, Fulton AB. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Invest Ophthalmol Vis Sci 2007; 48: 4351–4359.
  • Liu K, Akula JD, Falk C, Hansen RM, Fulton AB. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2006; 47: 2639–2647.
  • Downie LE, Hatzopoulos KM, Pianta MJ, Vingrys AJ, Wilkinson‐berka JL, Kalloniatis M, Fletcher EL. Angiotensin type‐1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. J Comp Neurol 2010; 518: 41–63.
  • Fulton AB, Reynaud X, Hansen RM, Lemere CA, Parker C, Williams TP. Rod photoreceptors in infant rats with a history of oxygen exposure. Invest Ophthalmol Vis Sci 1999; 40: 168–174.
  • Downie LE, Pianta MJ, Vingrys AJ, Wilkinson‐berka JL, Fletcher EL. Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol 2007; 504: 404–417.
  • Chan‐ling T, Stone J. Degeneration of astrocytes in feline retinopathy of prematurity causes failure of the blood‐retinal barrier. Invest Ophthalmol Vis Sci 1992; 33: 2148–2159.
  • Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Invest Ophthalmol Vis Sci 1997; 38: 1653–1666.
  • Downie LE, Pianta MJ, Vingrys AJ, Wilkinson‐berka JL, Fletcher EL. AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen‐induced retinopathy. Glia 2008; 56: 1076–1090.
  • Chan‐ling T, Gock B, Stone J. The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 1995; 36: 1201–1214.
  • Chan‐ling T, Stone J. Degeneration of astrocytes in feline retinopathy of prematurity causes failure of the blood‐retinal barrier. Invest Ophthalmol Vis Sci 1992; 33: 2148–2159.
  • Chan‐ling T, Tout S, Holländer H, Stone J. Vascular changes and their mechanisms in the feline model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 1992; 33: 2128–2147.
  • Stone J, Chan‐ling T, Pe'er J, Itin A, Gnessin H, Keshet E. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 1996; 37: 290–299.
  • Dorrell MI, Aguilar E, Jacobson R, Trauger SA, Friedlander J, Siuzdak G, Friedlander M. Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen‐induced retinopathy. Glia 2010; 58: 43–54.
  • Tout S, Chan‐ling T, Holländer H, Stone J. The role of Müller cells in the formation of the blood‐retinal barrier. Neuroscience 1993; 55: 291–301.
  • Zhao L, Ma W, Fariss RN, Wong WT. Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy. Exp Eye Res 2009; 88: 1004–1013.
  • Vessey KA, Wilkinson‐berka JL, Fletcher EL. Characterization of retinal function and glial cell response in a mouse model of oxygen‐induced retinopathy. J Comp Neurol 2011; 519: 506–527.
  • Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 2006; 116: 3266–3276.
  • Moravski CJ, Kelly DJ, Cooper ME, Gilbert RE, Bertram JF, Shahinfar S, Skinner SL et al. Retinal neovascularization is prevented by blockade of the renin‐angiotensin system. Hypertension 2000; 36: 1099–1104.
  • Danser AH, Van den dorpel MA, Deinum J, Derkx FH, Franken AA, Peperkamp E, De jong PT et al. Renin, prorenin and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy. J Clin Endocrinol Metab 1989; 68: 160–167.
  • Danser AH, Derkx FH, Admiraal PJ, Deinum J, De jong PT, Schalekamp MA. Angiotensin levels in the eye. Invest Ophthalmol Vis Sci 1994; 35: 1008–1018.
  • Sarlos S, Rizkalla B, Moravski CJ, Cao Z, Cooper ME, Wilkinson‐berka JL. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am J Pathol 2003; 163: 879–887.
  • Yokota H, Nagaoka T, Mori F, Hikichi T, Hosokawa H, Tanaka H, Ishida Y et al. Prorenin levels in retinopathy of prematurity. Am J Ophthalmol 2007; 143: 531–533.
  • Satofuka S, Ichihara A, Nagai N, Koto T, Shinoda H, Noda K, Ozawa Y et al. Role of non‐proteolytically activated prorenin in pathologic, but not physiologic, retinal neovascularization. Invest Ophthalmol Vis Sci 2007; 48: 422–429.
  • Nagai N, Noda K, Urano T, Kubota Y, Shinoda H, Koto T, Shinoda K et al. Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci 2005; 46: 1078–1084.
  • Hard A‐L, Wennerholm U‐B, Niklasson A, Hellstrom A. Severe ROP in twins after blockage of the renin‐angiotensin system during gestation. Acta Paediatr 2008; 97: 1142–1144.
  • Ohlmann A, Seitz R, Braunger B, Seitz D, Bösl MR, Tamm ER. Norrin promotes vascular regrowth after oxygen‐induced retinal vessel loss and suppresses retinopathy in mice. J Neurosci 2010; 30: 183–193.
  • Ewing FME, Deary IJ, Strachan MWJ, Frier BM. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 1998; 19: 462–476.
  • Holfort SK, Klemp K, Kofoed PK, Sander B, Larsen M. Scotopic electrophysiology of the retina during transient hyperglycemia in type 2 diabetes. Invest Ophthalmol Vis Sci 2010; 51: 2790–2794.
  • Palmowski AM, Sutter EE, Bearse MA Jr, Fung W. Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 1997; 38: 2586–2596.
  • Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol 1987; 105: 810–814.
  • Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM. Glial reactivity and impaired glutamate metabolism in short‐term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998; 47: 815–820.
  • Rungger‐brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 2000; 41: 1971–1980.
  • Baydas G, Tuzcu M, Yasar A, Baydas B. Early changes in glial reactivity and lipid peroxidation in diabetic rat retina: effects of melatonin. Acta Diabetol 2004; 41: 123–128.
  • Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 2003; 52: 506–511.
  • Mizutani M, Gerhardinger C, Lorenzi M. Müller cell changes in human diabetic retinopathy. Diabetes 1998; 47: 445–449.
  • Barber AJ, Antonetti DA, Gardner TW, Group TPSRR. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest Ophthalmol Vis Sci 2000; 41: 3561–3568.
  • Ly A, Yee P, Vessey KA, Phipps JA, Jobling AI, Fletcher EL. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss. Invest Ophthalmol Vis Sci 2011; 52: 9316–9326
  • Li Q, Puro DG. Diabetes‐induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci 2002; 43: 3109–3116.
  • Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 1156–1163.
  • Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P. Expression of acute‐phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 2005; 46: 349–357.
  • Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M et al. Diabetic retinopathy: seeing beyond glucose‐induced microvascular disease. Diabetes 2006; 55: 2401–2411.
  • Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 2004; 18: 1450–1452.
  • Shelton MD, Kern TS, Mieyal JJ. Glutaredoxin regulates nuclear factor kappa‐B and intercellular adhesion molecule in Müller cells: model of diabetic retinopathy. J Biol Chem 2007; 282: 12467–12474.
  • Bek T. Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol Scand 1997; 75: 388–392.
  • Bek T. Capillary closure secondary to retinal vein occlusion. A morphological, histopathological, and immunohistochemical study. Acta Ophthalmol Scand 1998; 76: 643–648.
  • Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB. TGF‐beta increases retinal endothelial cell permeability by increasing MMP‐9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 2001; 42: 853–859.
  • Jin M, Kashiwagi K, Iizuka Y, Tanaka Y, Imai M, Tsukahara S. Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina 2001; 21: 28–33.
  • Giebel SJ, Menicucci G, Mcguire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood‐retinal barrier. Lab Invest 2005; 85: 597–607.
  • Wang J, Xu X, Elliott MH, Zhu M, Le Y‐Z. Müller cell‐derived VEGF is essential for diabetes‐induced retinal inflammation and vascular leakage. Diabetes 2010; 59: 2297–2305.
  • Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX. Pigment epithelium‐derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J 2006; 20: 323–325.
  • Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, Lavail MM. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 1990; 347: 83–86.
  • Mark RJ, Keller JN, Kruman I, Mattson MP. Basic FGF attenuates amyloid β‐peptide‐induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+‐ATPase activity in hippocampal neurons. Brain Res 1997; 756: 205–214.
  • Funatsu H, Yamashita H, Ikeda T, Mimura T, Eguchi S, Hori S. Vitreous levels of interleukin‐6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology 2003; 110: 1690–1696.
  • Malecaze F, Clamens S, Simorre‐pinatel V, Mathis A, Chollet P, Favard C, Bayard F et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor‐like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994; 112: 1476–1482.
  • Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M. Unbalanced vitreous levels of pigment epithelium‐derived growth factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 2002; 134: 348–353.
  • Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, Hassessian H et al. VEGF‐initiated blood–retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci 2001; 42: 2408–2413.
  • Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age‐related macular degeneration. Ophthalmology 2006; 113: 363–372.
  • Goldstein IM, Ostwald P, Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Res 1996; 36: 2979–2994.
  • Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA 1991; 88: 11555–11558.
  • Tezel G, Luo C, Yang X. Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest Ophthalmol Vis Sci 2007; 48: 1201–1211.
  • Barile GR, Pachydaki SI, Tari SR, Lee SE, Donmoyer CM, Ma W, Rong LL et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2005; 46: 2916–2924.
  • El‐asrar AMA, Desmet S, Meersschaert A, Dralands L, Missotten L, Geboes K. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am J Ophthalmol 2001; 132: 551–556.
  • El‐asrar AM, Meersschaert A, Dralands L, Missotten L, Geboes K. Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye 2000; 18: 306–313.
  • Carmo A, Cunha‐vaz JG, Carvalho AP, Lopes MC. Nitric oxide synthase activity in retinas from non‐insulin‐dependent diabetic Goto‐Kakizaki rats: correlation with blood–retinal barrier permeability. Nitric Oxide 2000; 4: 590–596.
  • Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol 2008; 126: 227–232.
  • Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin‐induced diabetic rats. Vis Neurosci 2000; 17: 463–471.
  • Barber AJ, Antonetti DA, Kern TS, Reiter CEN, Soans RS, Krady JK, Levison SW et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 2005; 46: 2210–2218.
  • Krady JK, Basu A, Allen CM, Xu Y, Lanoue KF, Gardner TW, Levison SW. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase‐3 activation in a rodent model of diabetic retinopathy. Diabetes 2005; 54: 1559–1565.
  • Xu H, Chen M, Manivannan A, Lois N, Forrester JV. Age‐dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 2008; 7: 58–68.
  • Xu H, Chen M, Forrester JV. Para‐inflammation in the aging retina. Prog Retin Eye Res 2009; 28: 348–368.
  • Jiang LQ, Jorquera M, Streilein JW. Subretinal space and vitreous cavity as immunologically privileged sites for retinal allografts. Invest Ophthalmol Vis Sci 1993; 34: 3347–3354.
  • Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005; 80: 595–606.
  • Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 2009; 4: e7945.
  • Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age‐related macular degeneration. Retina 1994; 14: 130–142.
  • Green WR. Histopathology of age‐related macular degeneration. Mol Vis 1999; 5: 27.
  • Gao H, Hollyfield JG. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1992; 33: 1–17.
  • Chen H, Liu B, Lukas TJ, Neufeld AH. The aged retinal pigment epithelium/choroid: a potential substratum for the pathogenesis of age‐related macular degeneration. PLoS One 2008; 3: e2339.
  • Chen M, Muckersie E, Robertson M, Forrester JV, Xu H. Up‐regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina. Exp Eye Res 2008; 87: 543–550.
  • Steinle JJ, Sharma S, Smith CP, Mcfayden‐ketchum LS. Normal aging involves modulation of specific inflammatory markers in the rat retina and choroid. The J Gerontol A Biol Sci Med Sci 2009; 64A: 325–331.
  • Kelly J, Khan AA, Yin J, Ferguson TA, Apte RS. Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 2007; 117: 3421–3426.
  • Zhao L, Ma W, Fariss RN, Wong WT. Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage: microglial inhibition as a potential therapeutic strategy. Am J Pathol 2011; 179: 1265–1277.
  • Combadière C, Feumi C, Raoul W, Keller N, Rodéro M, Pézard A, Lavalette S et al. CX3CR1‐dependent subretinal microglia cell accumulation is associated with cardinal features of age‐related macular degeneration. J Clin Invest 2007; 117: 2920–2928.
  • Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ et al. An animal model of age‐related macular degeneration in senescent Ccl‐2‐ or Ccr‐2‐deficient mice. Nat Med 2003; 9: 1390–1397.
  • Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ et al. Murine Ccl2/Cx3cr1 deficiency results in retinal lesions mimicking human age‐related macular degeneration. Invest Ophthalmol Vis Sci 2007; 48: 3827–3836.
  • Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW et al. The drusenlike phenotype in aging Ccl2‐knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 2009; 50: 5934–5943.
  • Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J et al. Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 2009; 174: 2310–2323.
  • Raoul W, Keller N, Rodéro M, Behar‐cohen F, Sennlaub F, Combadière C. Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells. J Neuroimmunol 2008; 198: 56–61.
  • Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age‐related macular degeneration. J Biol Chem 2003; 278: 42027–42035.
  • Gurne DH, Tso MO, Edward DP, Ripps H. Antiretinal antibodies in serum of patients with age‐related macular degeneration. Ophthalmology 1991; 98: 602–607.
  • Penfold PL, Provis JM, Furby JH, Gatenby PA, Billson FA. Autoantibodies to retinal astrocytes associated with age‐related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1990; 228: 270–274.
  • Tuo J, Smith BC, Bojanowski CM, Meleth AD, Gery I, Csaky KG, Chew EY et al. The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age‐related macular degeneration. FASEB J 2004; 19: 1297–1299.
  • Ramírez JM, Ramírez AI, Salazar JJ, De hoz R, Triviño A. Changes of astrocytes in retinal ageing and age‐related macular degeneration. Exp Eye Res 2001; 73: 601–615.
  • Madigan MC, Penfold PL, Provis JM, Balind TK, Billson FA. Intermediate filament expression in human retinal macroglia. Histopathologic changes associated with age‐related macular degeneration. Retina 1994; 14: 65–74.
  • Wu KHC, Madigan MC, Billson FA, Penfold PL. Differential expression of GFAP in early v late AMD: a quantitative analysis. Br J Ophthalmol 2003; 87: 1159–1166.
  • Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ. Cellular response in subretinal neovascularization induced by bFGF‐impregnated microspheres. Invest Ophthalmol Vis Sci 1999; 40: 524–528.
  • Sullivan R, Penfold P, Pow DV. Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 2003; 44: 856–865.
  • Charbel issa P, Berendschot TT, Staurenghi G, Holz FG, Scholl HP. Confocal blue reflectance imaging in type 2 idiopathic macular telangiectasia. Invest Ophthalmol Vis Sci 2008; 49: 1172–1177.
  • Charbel issa P, Van der veen RL, Stijfs A, Holz FG, Scholl HP, Berendschot TT. Quantification of reduced macular pigment optical density in the central retina in macular telangiectasia type 2. Exp Eye Res 2009; 89: 25–31.
  • Helb HM, Charbel issa P, Van der veen RL, Berendschot TT, Scholl HP, Holz FG. Abnormal macular pigment distribution in type 2 idiopathic macular telangiectasia. Retina 2008; 28: 808–816.
  • Yannuzzi LA, Bardal AM, Freund KB, Chen KJ, Eandi CM, Blodi B. Idiopathic macular telangiectasia. Arch Ophthalmol 2006; 124: 450–460.
  • Wong WT, Forooghian F, Majumdar Z, Bonner RF, Cunningham D, Chew EY. Fundus autofluorescence in type 2 idiopathic macular telangiectasia: correlation with optical coherence tomography and microperimetry. Am J Ophthalmol 2009; 148: 573–583.
  • Abujamra S, Bonanomi MT, Cresta FB, Machado CG, Pimentel SL, Caramelli CB. Idiopathic juxtafoveolar retinal telangiectasis: clinical pattern in 19 cases. Ophthalmologica 2000; 214: 406–411.
  • Paunescu LA, Ko TH, Duker JS, Chan A, Drexler W, Schuman JS, Fujimoto JG. Idiopathic juxtafoveal retinal telangiectasis: new findings by ultrahigh‐resolution optical coherence tomography. Ophthalmology 2006; 113: 48–57.
  • Tikellis G, Gillies MC, Guymer RH, Mcallister IL, Shaw JE, Wong TY. Retinal vascular caliber and macular telangiectasia type 2. Ophthalmology 2009; 116: 319–323.
  • Barthelmes D, Gillies MC, Sutter FK. Quantitative OCT analysis of idiopathic perifoveal telangiectasia. Invest Ophthalmol Vis Sci 2008; 49: 2156–2162.
  • Charbel issa P, Helb HM, Holz FG, Scholl HP. Correlation of macular function with retinal thickness in nonproliferative type 2 idiopathic macular telangiectasia. Am J Ophthalmol 2008; 145: 169–175.
  • Charbel issa P, Helb HM, Rohrschneider K, Holz FG, Scholl HP. Microperimetric assessment of patients with type 2 idiopathic macular telangiectasia. Invest Ophthalmol Vis Sci 2007; 48: 3788–3795.
  • Charbel issa P, Holz FG, Scholl HP. Findings in fluorescein angiography and optical coherence tomography after intravitreal bevacizumab in type 2 idiopathic macular telangiectasia. Ophthalmology 2007; 114: 1736–1742.
  • Klein R, Blodi BA, Meuer SM, Myers CE, Chew EY, Klein BEK. The prevalence of macular telangiectasia type 2 in the Beaver Dam Eye Study. Am J Ophthalmol 2010; 150: 55–62
  • Charbel issa P, Finger RP, Helb HM, Holz FG, Scholl HP. A new diagnostic approach in patients with type 2 macular telangiectasia: confocal reflectance imaging. Acta Ophthalmol 2008; 86: 464–465.
  • Charbel issa P, Finger RP, Holz FG, Scholl HP. Eighteen‐month follow‐up of intravitreal bevacizumab in type 2 idiopathic macular telangiectasia. Br J Ophthalmol 2008; 92: 941–945.
  • Maruko I, Iida T, Sekiryu T, Fujiwara T. Early morphological changes and functional abnormalities in group 2A idiopathic juxtafoveolar retinal telangiectasis using spectral domain optical coherence tomography and microperimetry. Br J Ophthalmol 2008; 92: 1488–1491.
  • Surguch V, Gamulescu MA, Gabel VP. Optical coherence tomography findings in idiopathic juxtafoveal retinal telangiectasis. Graefes Arch Clin Exp Ophthalmol 2007; 245: 783–788.
  • Zeimer MB, Padge B, Heimes B, Pauleikhoff D. Idiopathic macular telangiectasia type 2: distribution of macular pigment and functional investigations. Retina 2010; 30: 586–595.
  • Davies NP, Morland AB. Macular pigments: their characteristics and putative role. Prog Retin Eye Res 2004; 23: 533–559.
  • Trieschmann M, Van kuijk FJ, Alexander R, Hermans P, Luthert P, Bird AC, Pauleikhoff D. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye 2008; 22: 132–137.
  • Whitehead AJ, Mares JA, Danis RP. Macular pigment: a review of current knowledge. Arch Ophthalmol 2006; 124: 1038–1045.
  • Gass JD. Müller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacualr retinoschisis. Arch Ophthalmol 1999; 117: 821–823.
  • Yamada E. Some structural features of the fovea centralis in the human retina. Arch Ophthalmol 1969; 82: 151–159.
  • Barnaby AM, Hansen RM, Moskowitz A, Fulton AB. Development of scotopic visual thresholds in retinopathy of prematurity. Invest Ophthalmol Vis Sci 2007; 48: 4854–4860.
  • Koizumi H, Slakter JS, Spaide RF. Full‐thickness macular hole formation in idiopathic parafoveal telangiectasis. Retina 2007; 27: 473–476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.